

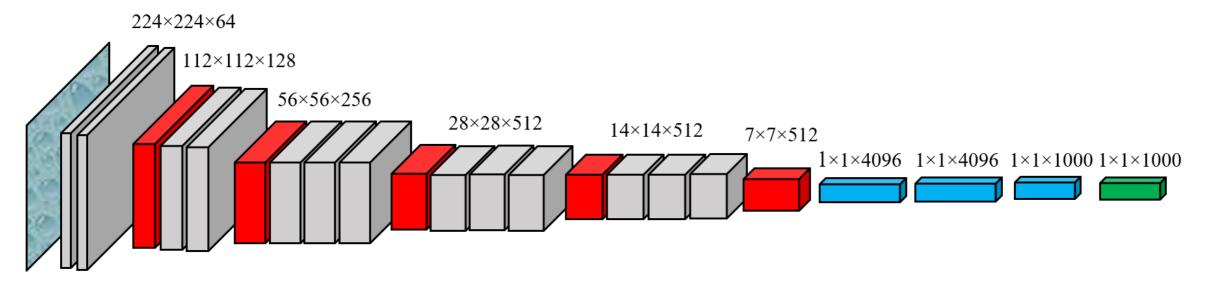
FELLINI GENERAL MEETING

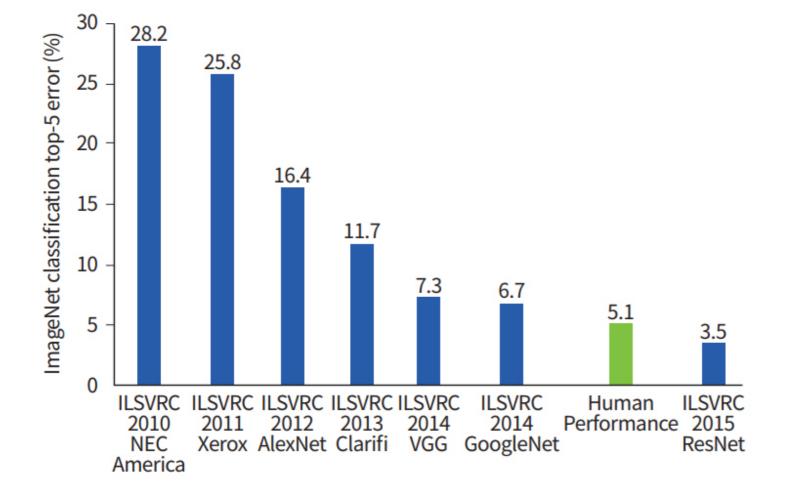
STATISTICAL LEARNING THEORY GEOMETRICALLY STRUCTURED DATA

Pietro Rotondo — University of Milan

DEEP LEARNING: SUCCESS IN APPLICATIONS VS LACK OF THEORETICAL UNDERSTANDING

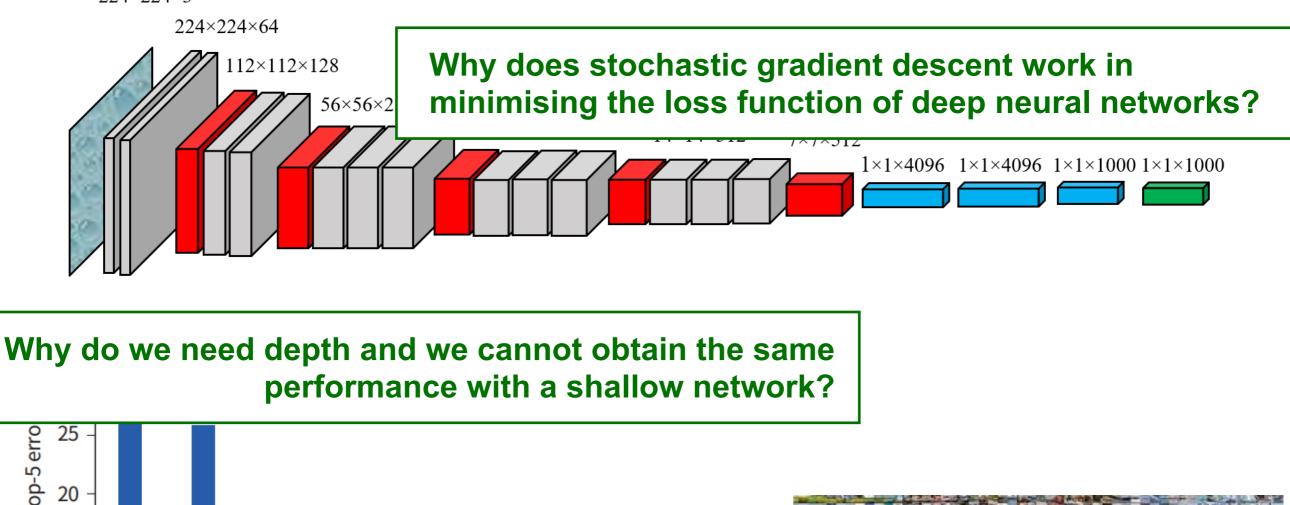
224×224×3

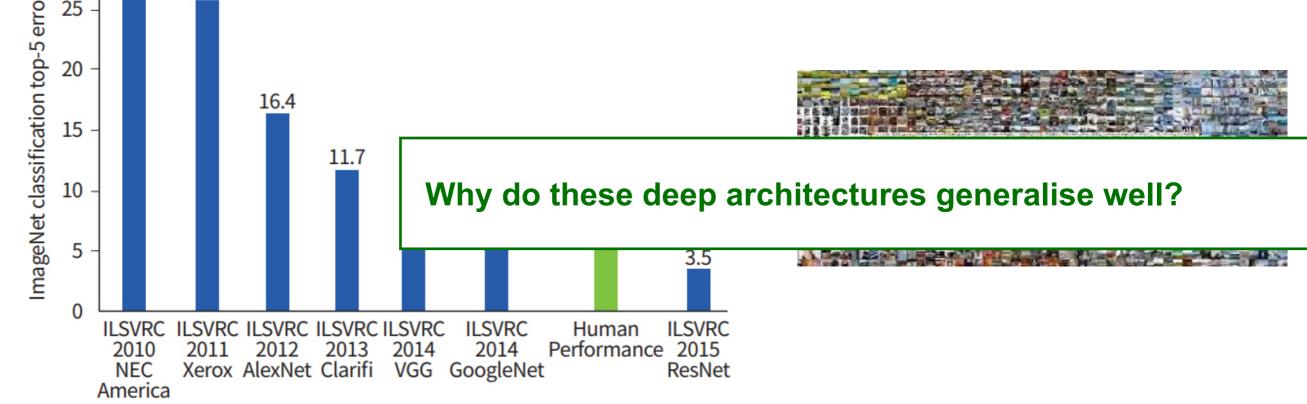




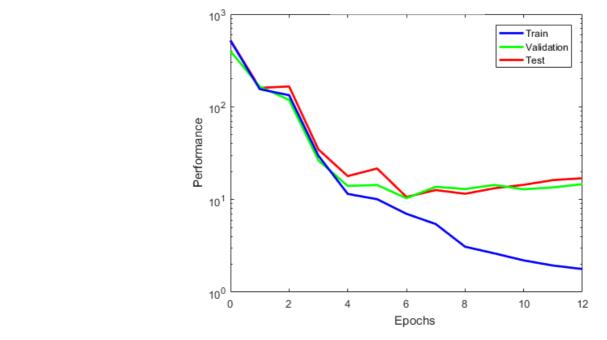
DEEP LEARNING: SUCCESS IN APPLICATIONS VS LACK OF THEORETICAL UNDERSTANDING

224×224×3





NEITHER STATISTICAL PHYSICS AND THEORETICAL COMPUTER SCIENCE PROVIDE SATISFACTORY ANSWERS



STATISTICAL PHYSICS does provide the generalization performance in the so-called "Teacher-Student scenario"

PROS exact results in the thermodynamic limit!

GENERALIZATION =

architecture to perform

the ability of a given

well on unseen data

CONS results hold only for very simple architectures (perceptron, committee machine, Support vector machine)

COMPUTER SCIENCE (and Statistical Learning Theory in particular) offer upper bounds to the generalization performance

PROS bounds are universal, they do not depend on the architecture at hand

CONS bounds are too loose to be useful in practice

INTERDISCIPLINARY RESEARCH EFFORTS MAY DELIVER NOVEL INSIGHTS ON THE PROBLEM

CONSIDERING MORE REALISTIC MODELS OF DATA STRUCTURE

Perceptual manifolds inspired by Neuroscience (H. Sompolinsky et al.) Hidden manifold models (L. Zdeborova et al.)

This is what I have done in my first year as a FF

PROVIDING ANALYTICALLY TRACTABLE LIMITS of Deep Neural Networks

Mainly the so-called **N**eural **T**angent **K**ernel limit (introduced by Computer Scientists in 2018)

This is what I would like to look more in detail in the next years