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The Universality of the Free-Fall

Galileo/Newton’s (Weak) Equivalence Principle

The free-fall is independent of free-falling body masses
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Einstein’s Equivalence Principle

The result of any local non-gravitational experiment is
independent from the velocity of an observer in free-fall and
his position and time in the universe

~ the Equivalence Principle is at the heart of any metric ~
theory of gravity

~ testing it means probing our paradigm in ~
understanding gravitation

Clifford M. Will, Theory and experiment in gravitational physics (1993)
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Tests of the Weak Equivalence Principle
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With antimatter? _
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« Failed attempts with charged positrons ~ 1967 T R T T T B !
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YEAR OF EXPERIMENT

« Failed attempts with charged antiprotons ~ 1985
* Some questioned indirect limits 1987 - 2000
» Very rough limit set the ALPHA collaboration with antihydrogen in 2014

WEP tests with antimatter are a young active line of research

Any deviation from the expected perfect equality would be an indication of new physics

Will C. M, Living Rev. Rel. 9 (2006) 3
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Testing the WEP with antiparticles

A topic open to anti-gravity speculation due to lack of experimental constraints

1. Morrison's argument: antigravity would violate conservation of energy

2. Schiff's (Dvali's) argument: Standard Model and gravitational repulsion are incompatible

3. Good's argument: antigravity would cause an unobserved CP violation in kaons oscillations
4

Karshenboim's argument: EP cannot stand for light, matter and antimatter at the same time in case
of antigravity — WEP on antimatter must be valid at the level we can verify deflection of light in GR

Does it constraint quantum gravity models?

New scalar and vector fields are allowed in some models, and such fields may mediate interactions

violating the weak equivalence principle: attractive/repulsive vector gravitons  attractive scalar gravitons

Goe / —
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r
with cancellation effects occuring in matter experiments ifa ~b and v ~ s.

Does it constraint extra force models?
Antimatter WEP tests can constraint fifth force models and dark photons models.

Karshenboim, S. G, talk to 2° Workshop on Antimatter and Gravity (2013)  Fayet P, Phys. Rev. D 99 (2019) 055043
M. Nieto and T. Goldman, Phys. Rep. 205,5 221-281 (1992) Fischbach E. et al. (2020), arXiv:2012.02862v1
Phys. Rev. D 33 (1986) 2475 Caldwell, A. Dvali G. (2019), arXiv:1903.09096
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Testing the WEP with antimatter

1.

Charged antiparticles - plan A

» Take some artificial cold charged antiparticles

* Drop them

* Measure their free-fall in a field-free environment.
Charged antiparticles - plan B

» Take some artificial cold charged antiparticles

* Build with them a very precise clock

* Use it to observe the gravitational redshift
Neutral antiparticles — plan C

+—Takesomeartificial-cold-reutratantiparteles no way
Neutral antiparticles - plan D

» Take a naturally pulsed source of neutral antiparticles

* wait for them pass in a gravitational field ...

* ... and observe their Shapiro delay compared to light
Neutral antiparticles - plan E

« Take some artificial cold charged antiparticles

* Take counterparts of the opposite charge

*  Putthem together to form a neutral atom

*  Drop it before it self-annihilates

*  Measure its free-fall

-
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Testing the WEP with antimatter
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5. Neutral antiparticles - plan E

3/5/2021

Take some artificial cold charged antiparticles
Take counterparts of the opposite charge

Put them together to form a neutral atom
Drop it before it self-annihilates

Measure its free-fall
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Gravity detection scheme: the moiré deflectometer

ARTICLE
Received 5 Nov 2013 | Accepted 27 Jun 2014 | Published 28 Jul 2014 DOI: 10.1038/ncomms5538 OPEN

A moiré deflectometer for antimatter
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alignment in all three spatial directions

* Atoms'time-of-flight knowledge required
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Pulsed sources of neutral antiatoms - available options

Positronium (Ps) | Plan '
« short lifetime only in GS (142 ns)
* 50% of mass is antimatter
 first generation elementary system

* produced in large numbers @ IN?,?/N i

Antihydrogen (H)

* only stable candidate

e 99.95% mass is in form of QCD binding E
 first generation, non-elementary system
* produced in small amounts only @ y

N

Muonium (Mu)

* short lifetime in all levels (2.2 us)

* 99.5% of mass is antimatter

* second generation elementary system

» produced in large numbers @ ™"~
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1) http://moriond.in2p3.fr/2019/Gravitation/transparencies/6_friday/1_morning/3_soter.pdf
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Producing a pulsed source of 23S long-lived Ps

Several methods already explored in literature

1. 13S-23P single photon laser + 23P-23S microwaves (1975, Mills et al.)

2. 135-23S two-photon laser (1984 Chu, Mills et al; 1993, Fee, Mills et al.)

3. 135-23P single photon laser + mixing electric field (2017, Alonso, Hogan, Cassidy)

23S Ps state

* Optically metastable

e 2.2 us self-annihilation lifetime
* S-wave (no electric dipole)

* Reachable with today lasers

» Need a source with sufficient flux
(> 1 atom detected/shot) and
collimation (< 1 mrad)

Novel method: 135-33P-23S two-step laser excitation

» 205nm deep UV pulsed laser driving 135-33P
» 1312nm laser for stimulated 33P-23S decay

Amsler C. et al (AEgIS collaboration), Phys. Rev. A (2019) 033405
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Physics perspectives from 23S Ps inertial sensing

PHYSICAL REVIEW A VOLUME 54, NUMBER 4 OCTOBER 1996
Inertial sensing with classical atomic beams

Mach-Zehnder Interferometer Beam params. Interferometer
. -1 _
Grating 1 Grating 2 Grating 3 ¢ =0.0014 s ¢ 0.2
I I N I 00 = 17 mrad d = 656 nm
dv/v=13% T =2.0us

Detector
\ J
Y

__1 4] 4000m/s? (200 h
=N m ™ m/s” ( ours)

Physics within reach with this sensitivity
1. First detection of optical forces on Ps atoms (comparison with Rydberg Ps)
2. First detection of the Casimir-Polder force on antimatter

Next steps towards intertial sensing with positronium

1. Improve detection: high resolution imaging MCP for 23S Ps (up to x6 solid angle)

2. Improve laser excitation efficiency: test beam with 1312 nm stimulated decay (x3)
3. Improve source directionality: target nanofabrication for forward emission

4. Improve beam collimation:|1s-2p Doppler cooling
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Work in progress

Concept tested at TN-AML et beamline

Spatial resolution of 12 um

Timing resolution of 1.5 ns

Detection efficiency et of 40 %
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Pulsed sources of neutral antiatoms - available options

Positronium (Ps)

« short lifetime only in GS (142 ns)
*  50% of mass is antimatter
 first generation elementary system

* produced in large numbers @ IN?,?/N i

Antihydrogen (H) | Plan 2

* only stable candidate

e 99.95% mass is in form of QCD binding E
 first generation, non-elementary system
* produced in small amounts only @ y

N

Muonium (Mu)

* short lifetime in all levels (2.2 us)

* 99.5% of mass is antimatter

* second generation elementary system

» produced in large numbers @ ™"~
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1) http://moriond.in2p3.fr/2019/Gravitation/transparencies/6_friday/1_morning/3_soter.pdf
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positronium
converter

laser
excitation

antiproton
trap

4) Charge-exchange with antiprotons

Ps*4+p— H" +¢~

5) Detection of the annihilation products
after collision with the trap walls

Doser M. et al., Class. Quantum Grav. 29, 184009 (2012).
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Hbar formation cross-section [m2]

Conceptual scheme for pulsed antihydrogen production

1) Preparation of a cold antiproton plasma
in a Penning trap
2) Pulsed production of cold Ps from e*
conversion in mesoporous silica
3) Two-step laser excitation of Ps to
Rydberg levels
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Ps* velocity towards antiprotons at rest [m/s]
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EJ-200 + PMT
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The AEgIS experimental complex

Laser spot
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Antihydrogen detection - scintillator array

% EJ-200 scintillator slab
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Pulsed production of antihydrogen
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First-ever pulsed source of antihydrogen just demonstrated - 100 events in 2200 trials
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Conclusions - towards a WEP test with antihydrogen

Probing the Weak Equivalence Principle with antihydrogen
1. Proof-of-concept pulsed antihydrogen source

2. Increase of produced antihydrogen atoms by a factor of 10
3. Demonstrate a forward pulsed beam of antihydrogen

4. First free-fall tests using a moiré deflectometer!
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AEglS-2: collinear scheme for boosted antihydrogen production
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