

Designing the next-generation 0vββ decay experiment CUPID

Giovanni Benato General Meeting of the Fellini Program, online, Mar. 4-5, 2021

Matter producing 0vßß decay

What is conserved in the SM?

• Band \Rightarrow Non-perturbative effects at high energy

How can we test the conservation of B, L, (B-L)?

• (B-L), $(L_e - L_{\mu})$, $(L_{\mu} - L_{\mu})$, $(L_{-} - L_{e}) \Rightarrow Oscillation experiments$

<u>S. Dell'Oro, S. Marcocci and F. Vissani, PoS</u> <u>NEUTEL2017 (2018) 030</u>

M. Agostini, G. Benato, J. Detwiler, J. Menendez and F. Vissani *Review paper coming out soon(ish)*

ΔL	Δв	Δ(B-L)	Process	
-1	-1	0	$p \rightarrow e^{+} + \pi^{0}$	Matter creation and destruction
+2	0	-2	$(A,Z) \rightarrow (A,Z+2) + 2e^{-}$	

Expected Ovßß decay signature

 $\beta\beta$ decay signature

- Continuum for $2\nu\beta\beta$ decay
- Peak at $Q_{\beta\beta}$ for $0\nu\beta\beta$ decay \Rightarrow Energy peak is the only necessary and sufficient signature to claim a discovery
- Additional signatures from signal topology, pulse shape discrimination, multiple channel readout, daughter tagging, ...

 $0\nu\beta\beta$ decay rate

$$(T_{1/2}^{0V})^{-1} = G_{0V} \cdot |M_{0V}|^2 \cdot |f|^2 / m_e^2$$

- $T_{1/2}^{0v} = 0v\beta\beta$ decay halflife
- G_{ov} = phase space (known)
- M_{ov} = nuclear matrix element (NME)
- f = new physics term

Cryogenic calorimeters a.k.a. bolometers

- Low heat capacity @ T ~ 10 mK
- Excellent energy resolution (~0.2% FWHM)
- Detector agnostic to origin of energy deposition
- Detector response of O(1) sec if readout with Neutron Transmutation Doped (NTD) Ge sensors

Simplified thermal model

- Crystal heat capacity: C
- Conductivity of coupling to thermal bath: G
- Signal amplitude $\propto \Delta T = E_{dep}/C$
- Decay constant: T = G/C

Scintillating bolometers

- Couple main crystal with secondary bolometer reading the scintillation (or Cherenkov) light
- Exploit different light yield (LY) of α vs β/γ to actively suppress background
- Typical light detector: thin Ge wafer coupled to thermometer (NTD, TES, KID, MMC)

CUORE: searching for $0\nu\beta\beta$ decay in ¹³⁰Te

- 988 TeO₂ crystals with natural Te composition \rightarrow 742 kg of total mass, 206 kg of ¹³⁰Te mass
- Located in Hall A of the Gran Sasso National Lab
- Current limit: T^{0v}_{1/2} > 3.2·10²⁵ yr @ 90% C.I.
- $Q_{\beta\beta}^{(130}$ Te) = 2527.5 keV

ROI - External sources

CUPID: CUORE Upgrade with Particle Identification

Goals:

- ~1500 Li₂¹⁰⁰MoO₄ scintillating crystals \rightarrow ~250 kg of ¹⁰⁰Mo
- FWHM: 5 keV at Q_{BB}
- α rejection via PID with light detectors (LD)
- Background: 10⁻⁴ counts/keV/kg/yr
- Discovery sensitivity: $T_{1/2}^{0v} = 10^{27}$ yr

How do we get there?

- Large cryogenic infrastructure \rightarrow Re-use CUORE cryostat
- Demonstrate LMO resolution
- Demonstrate PID performance of LDs
- Demonstrate reproducibility of performance
- Demonstrate low background

99.7% CL discovery sensitivity [PeV]

Designing CUPID

Innovative structural design

- Crystals floors "sitting" on each other
- Extremely simple frame geometry
 - \rightarrow Easy machining and assembling
 - \rightarrow Copper can be in substituted with cleaner materials

Monte Carlo simulation program

- Full geometry implemented in Geant4 application
- Geometry can be easily modified
 - \rightarrow Reciprocal feedback with mechanical engineering team
- Major update of background projection in summer 2020
- Muon veto design under optimization
- Additional background sources under study

CUPID background budget

- CUORE infrastructure clean enough for CUPID
- LiMoO crystal cleanliness under control
 - \rightarrow Some improvement possible by better controlling crystal production
- Pile-up of $2\nu\beta\beta$ events is a potential issue
 - \rightarrow Dedicated measurements and event simulation ongoing
- Crystal holder background from surface uranium and thorium contamination
 → CUORE data show U and Th at the level of 10 nBq/cm²

 \rightarrow Is it possible to reduce this background by better cleaning or substituting copper with another material?

 \rightarrow Dedicated setup to measure surface radioactivity of material sample under realization within the Fellini project!

A bolometric setup for surface α screening

Goals and requirements

- Sensitivity of few nBq/cm² with few weeks of measurement
 → Sensitive area > 0.1 m²
 - \rightarrow Background $\leq 1 \text{ nBq/cm}^2$
- Design must allow easy exchange of material sample

Design

- Tower of silicon wafers (Ø=15cm) operated as bolometers
- Material sample can be inserted between detectors

Status

- Design optimized with Geant4 MC simulation
- First prototype (4 detector modules) under construction
- First test foreseen in 1-2 months

Summary

- CUPID design under quick progress from the engineering and background minimization point of view
 → G. Benato coordinator of the MC simulation working group
- Minimization of crystal holder surface background fundamental for CUPID
 - \rightarrow Dedicated setup for measurement of materials' surface contamination under construction within Fellini project
 - \rightarrow If successful, the setup could become a screening facility for other low background experiments
 - \rightarrow If successful, the setup could be modified for precision measurements of β decay spectra
- Side-projects:
 - \rightarrow Global sensitivity analysis for $0\nu\beta\beta$ decay experiments (already adopted by APPEC)
 - \rightarrow Review paper on $0\nu\beta\beta$ decay under preparation for Rev. Mod. Phys.

