

Follow-up of gravitational wave events with Super-Kamiokande

Fellini meeting

Mathieu Lamoureux INFN Sezione di Padova (Italy)

Neutrino multimessenger astrophysics

- Astrophysical sources in the Universe are complex objects with many unknown mechanisms:
 - origin of bright light emission
 - origin of ultra-high-energy cosmic rays
 - how does a supernova explodes?
 - . .
- Coincident detection with different messengers (photons, gravitational waves, neutrinos) would greatly help.

Since 2015, LIGO/Virgo interferometers are detecting gravitational waves from the merging of: two black holes (BBH), two neutron stars (BNS) or NS+BH (NSBH).

- All these objects may be associated to a short Gamma-Ray Bursts (GRB) with neutrino production ^{1,2}.
- Detecting these neutrinos would allow better understanding of the mechanisms behind them.
- New GW catalogue was released in October 2020 with 39 confirmed sources detected between April and September 2019 (GWTC-2).

¹Foucart, F., et al (2016). Low mass binary neutron star mergers: Gravitational waves and neutrino emission. Physical Review D, 93(4). 10.1103/PhysRevD.93.044019 ²Caballero, O. L., et al (2016). Black hole spin influence on accretion disk neutrino detection. 10.1103/PhysRevD.93.123015

Experiment running since 1998, located in the Mozumi mine in Japan.

tomultipliers

Photo taken in 1996 during water filling

The Super-Kamiokande experiment

Low-energy events

INCREASING ENERGY

LE

GY EVENTS 100 MeV

JOW-ENERGY

LO

ŝ

щ

Fully-Contained (FC) events

8

Low-energy events (LE) $E_{\nu} \sim 3.5 - 100 \, \text{MeV}$

FO EVENTS ONTAINED 10 GeV FULLY-

INCREASING ENERGY

/er \simeq PARTIAL 0.1 Щ

Upward-going muons (UPMU)

NTAINED 100 GeV PARTIAL

 $\frac{UPGOING}{E_{\nu}} \sim 1.6 - 10^5 \frac{(UPMU)}{GeV}$

- Four samples
- Energies ranging from MeV to TeV * solar neutrinos
 - * supernova neutrinos
 - * accelerator neutrinos (T2K)
 - * atmospheric neutrinos
 - * astrophysical neutrinos?
- Relatively small size w.r.t. IceCube but wide sensitivity in the lower energy range

Follow-up results

- Define a $\pm 500 \, \text{s}$ centered on GW time
- Search for events within this time window, in the four SK samples
- · Compare observation with expected background and extract neutrino flux upper limits
- and compute eventual signal significance by comparing neutrino directions and GW localisation (only for high-energy SK samples)

No significant excess was observed in the follow-up analysis.

Constraining neutrino emission

Publication with detailed results is incoming...

What about combining with other measurements?

Experiment	Super-Kamiokande	ANTARES	IceCube	
Energy range	$0.1-10^5 \text{ GeV}$	TeV-PeV	$10-10^{9.5} { m GeV}$	
<i>E²dn/dE</i> limits (min)	$4 imes 10^1{ m GeV}{ m cm}^{-2}$	$1{ m GeVcm^{-2}}$	$0.03\mathrm{GeVcm^{-2}}$	
<i>E²dn/dE</i> limits (max)	$2 imes 10^3{ m GeVcm^{-2}}$	$9 \mathrm{GeV}\mathrm{cm}^{-2}$	$0.6 \mathrm{GeV}\mathrm{cm}^{-2}$	
Reference	this work	Poster $@CR\nu MM$	PoS-ICRC2019-918	

• One cam imagine combining Super-Kamiokande with ANTARES, so that we span a very large energy range.

 \rightarrow work during the secondment period in APC (Paris) from May 2021

- Looking into the future:
 - next-generation detectors will be much bigger: Hyper-Kamiokande in Japan, KM3NeT in the sea
 - increased sensitivity of GW detectors (more precise localisation, much more events...)

Take-away

- Detecting neutrinos in coincidence with gravitational waves would provide exceptional information on the mechanisms behind the corresponding astrophysical objects
- No detection so far (with Super-Kamiokande or any other experiment)...
- We have computed upper limits on the total energy emitted in neutrino for these sources (binary neutron stars, binary black holes, NSBH)

Backups

Neutrino telescopes

Need very large detectors to detect them...

Two big players

KM3NeT

One kilometer-cube of Ice at the South Pole, instrumented with $\sim 5k$ optical modules.

Kilometer-cube scale infrastructured in the Mediterranean Sea. Currently under deployment.

• Flux: We define the following likelihood by using the TS defined before:

$$\mathcal{L}(\phi_0; \mathcal{TS}_{\text{data}}, \mathcal{P}_{GW}) = \int \sum_{k=0}^2 \left[\frac{\left(c(\Omega) \phi_0 \right)^k}{k!} e^{-c(\Omega) \phi_0} \times \mathcal{P}_k(\mathcal{TS}_{\text{data}}) \right] imes \mathcal{P}_{GW}(\Omega) \, \mathrm{d}\Omega$$

where $P_i(TS)$ is the distribution of the test statistic assuming the signal consists in *i* events, assuming E^{-2} spectrum $(dn/dE = \phi_0 E^{-2})$. The 90% upper linit is obtained as above $(\int_0^{\phi_0^{up}} \mathcal{L}(\phi_0) d\phi_0 = 0.90)$.

• Total energy: Same for E_{iso} limits:

$$\mathcal{L}(E_{\rm iso}; TS_{\rm data}^{(i)}, \mathcal{V}_{GW}^{(i)}) = \int \sum_{k=0}^{2} \left[\frac{\left(c'(r, \Omega) E_{\rm iso}\right)^{k}}{k!} e^{-c'(r, \Omega) E_{\rm iso}} \times \mathcal{P}_{k}^{(i)}(TS_{\rm data}^{(i)}) \right] \times \mathcal{V}_{GW}^{(i)}(r, \Omega) \mathrm{d}\Omega$$

Detailed results for GW190425 (BNS, d = 0.16 Gpc)

Trigger name	Sample		$ u_e $	$\bar{\nu}_e$	$ u_{\mu} (\nu_{x})$	$ar{ u}_{\mu}$ $(ar{ u}_{ imes})$
GW190425	HE $E^2 \frac{dn}{dE}$	FC PC UPMU	$2.22 \cdot 10^{3} \\ 3.32 \cdot 10^{4} \\ - \\ 2.00 10^{3}$	$4.32 \cdot 10^{3}$ $1.12 \cdot 10^{5}$ -	$3.91 \cdot 10^{3}$ $4.81 \cdot 10^{3}$ -	9.42 \cdot 10 ³ 8.74 \cdot 10 ³
	HE E _{iso}	Per-flavour $\nu + \bar{\nu}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{4.28 \cdot 10^{5}}{3.85 \cdot 10^{56}}$ $\cdot 10^{56}$	$ \begin{array}{r} 2.16 \cdot 10^{56} \\ 1.96 \cdot 10^{56} \\ 2.52 \\ \end{array} $	$\frac{4.20 \cdot 10^{5}}{3.69 \cdot 10^{56}}$ $\cdot 10^{56}$
	 LΕ Φ	All	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		Fermi-Dirac	$3.92 \cdot 10^9$	$9.57\cdot 10^7$	$2.43 \cdot 10^{10}$	$2.87 \cdot 10^{10}$
	LE $E_{\rm iso}$	Per-flavour All	3.92 · 10 ⁵⁹	9.59 · 10 ⁵⁷ 5.54	2.43 · 10 ⁶⁰ · 10 ⁵⁸	$2.87 \cdot 10^{60}$

PRELIMINARY
$$E^2 \frac{dn}{dE}$$
 [in GeV cm⁻²], Φ [in cm⁻²], E_{iso} [in erg]

For each sample k, we define the likelihood:

$$\mathcal{L}_{\nu}^{(k)}(n_{S}^{(k)},\gamma;\Omega_{S}) = \frac{e^{-(n_{S}^{(k)}+n_{B}^{(k)})(n_{S}^{(k)}+n_{B}^{(k)})^{N^{(k)}}}}{N^{(k)}!} \prod_{i=1}^{N^{(k)}} \frac{n_{S}^{(k)}\mathcal{S}^{(k)}(\vec{x_{i}},E_{i};\Omega_{S},\gamma)+n_{B}^{(k)}\mathcal{B}^{(k)}(\vec{x_{i}},E_{i})}{n_{S}^{(k)}+n_{B}^{(k)}}$$

where $S^{(k)}$ and $B^{(k)}$ are the signal/background p.d.f. (characterizing detector response). Then, we compute the log-likelihood ratio:

$$\Lambda(\Omega_{\mathcal{S}}) = 2\sum_{k} \ln \left[\frac{\mathcal{L}_{\nu}(\widehat{n_{\mathcal{S}}^{(k)}}, \widehat{\gamma^{(k)}}; \Omega_{\mathcal{S}})}{\mathcal{L}_{\nu}(n_{\mathcal{S}}^{(k)} = 0; \Omega_{\mathcal{S}})} \right] + 2 \ln \mathcal{P}_{GW}(\Omega_{\mathcal{S}})$$

The final test statistic and p-value are:

$$TS = \max_{\Omega} [\Lambda(\Omega)] \text{ and } p_{\text{space}} = \int_{TS_{\text{data}}}^{\infty} \mathcal{P}_{\text{bkg}}(TS) \, \mathrm{d} TS$$

where $\mathcal{P}_{\mathrm{bkg}}(TS)$ is the expected background distribution.

Stacking population analysis

20

We combine the likelihoods within a given population³:

- Assuming same expected E_{iso} for all events: $\mathcal{L}^{Pop}(E_{iso}; \{TS_{data})^{(i)}\}, \{\mathcal{V}_{GW}^{(i)}\}) = \prod_{i=1}^{N} \mathcal{L}(E_{iso}; TS_{data})^{(i)}, \mathcal{V}_{GW}^{(i)})$
- Assuming neutrino emissions scales with object total mass \mathcal{M}_{tot} : $\mathcal{L}^{Pop}(f_{\nu}; \{TS_{data})^{(i)}\}, \{\mathcal{V}_{GW}^{(i)}\}, \{\mathcal{M}_{tot}^{(i)}\}) = \prod_{i=1}^{N} \int \mathcal{M}_{tot}^{(i)} \mathcal{L}(f_{\nu}\mathcal{M}_{tot}^{(i)}; TS_{data})^{(i)}, \mathcal{V}_{GW}^{(i)}) p_{GW}(\mathcal{M}_{tot}^{(i)}) d\mathcal{M}_{tot}^{(i)}$

³Veske et al. JCAP 05 (2020) 016

Supernova analysis

- With Super-K (and even Hyper-K), we expect only few events from SNe outside of our galaxy:
 ⇒ if SN happens in Andromeda, we may miss it!
- It is useful to have a SN burst detection system with a threshold on number of detected neutrinos **as low as possible**.
- New method RTS² was proposed to use time structure of the signal in order to separate signal (burst) from background (constant).
- It is performing much better for low multiplicity = further SNe
- It may be implemented in Hyper-K or other detectors in the SNEWS network of neutrino detectors.

