Neutrino Physics

- General introduction (S. Gariazzo) 8'
- Talks by the Fellini fellows:
 - S. Gariazzo 10'
 "Active and sterile neutrinos in the early universe: precision calculations"
 - 2 M. Lamoureux 10' "Follow-up of gravitational wave events with Super-Kamiokande"
 - 3 G. Benato 10' "Designing the next-generation $0\nu\beta\beta$ decay experiment CUPID"
- Scientific diffusion of the projects and conclusions (G. Benato) 7'
- Discussion (M. Lamoureux) 20'

The Standard Model of Particle Physics

The Standard Model of Particle Physics

Neutrino oscillations

[SNO, 2001-2002] [SuperKamiokande, 1998] $\phi_{\mu\tau} \, (10^6 \, cm^{-2} \, s^{-1}$ SNO ϕ_{CC}^{SNO} $v_{\mu} - v_{\tau}$ 10 Kamiokande $\Delta m_{\overline{e}}^{2}(eV^{2})$ SNO \$SSM Super-Kamiokande 10 68% 90% 99% $\phi_{e} (10^{6} \text{ cm}^{-2} \text{ s}^{-1})$ 10 ^{0.4} sin²2θ^{0.6} 0.2 0.8

first discovery of $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations from atmospheric ν

first discovery of $\nu_e \rightarrow \nu_\mu, \nu_\tau$ oscillations from solar ν

Nobel prize in 2015

$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$

S. Gariazzo

"Neutrino physics"

Fellini general meeting, 04/03/2021

The mixing matrix

U can be parameterized using 3 angles $(\theta_{12}, \theta_{13}, \theta_{23})$ and max 3 (1 Dirac δ , 2 Majorana [\exists only for Majorana ν]) phases

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} M$$
mainly atmospheric mainly SBL reactors and and LBL LBL accelerator LBL reactors accelerator appearance disappearance

Majorana phases irrelevant for oscillation experiments -Relevant for example in neutrinoless double-beta decay

$$s_{ij} \equiv \sin \theta_{ij}; \ c_{ij} \equiv \cos \theta_{ij}$$

SBL = short baseline; LBL = long baseline

Three Neutrino Oscillations

$$u_{lpha} = \sum_{k=1}^{3} U_{lpha k} \nu_k \quad (lpha = e, \mu, \tau)$$

 $U_{\alpha k}$ described by 3 mixing angles θ_{12} , θ_{13} , θ_{23} and one CP phase δ

Current knowledge of the 3 active ν mixing: [JHEP 02 (2021)]

NO/NH: Normal Ordering/Hierarchy, $m_1 < m_2 < m_3$ IO/IH: Inverted O/H, $m_3 < m_1 < m_2$ $\begin{array}{lll} \Delta m^2_{21} & = (7.50^{+0.22}_{-0.20}) \cdot 10^{-5} \ \mathrm{eV}^2 \\ |\Delta m^2_{31}| & = (2.55^{+0.02}_{-0.03}) \cdot 10^{-3} \ \mathrm{eV}^2 \ \mathrm{(NO)} \end{array}$ °≥10 $= (2.45^{+0.02}_{-0.03}) \cdot 10^{-3} \text{ eV}^2$ (IO) $\begin{array}{ll} 10 \sin^2(\theta_{12}) & = 3.18 \pm 0.16 \\ 10^2 \sin^2(\theta_{13}) & = 2.200 \substack{+0.069 \\ -0.062} (\text{NO}) \\ & = 2.225 \substack{+0.064 \\ -0.070} (\text{IO}) \end{array}$ 0.024 0.5 sin²θ₂₃ 0.016 0.020 sin²θ₁₃ 0.6 sin²θ₁₇ 15 °₹10 $10 \sin^2(\theta_{23})$ $= 5.74 \pm 0.14$ (NO) $= 5.78^{+0.10}_{-0.17}$ (IO) 8.5 2.3 2.4 2.5 2.6 |Δm²₃₁| [10⁻³ eV²] Δm²₂₁ [10⁻⁵ eV²] $\delta/\pi = 1.08^{+0.13}_{-0.12} \text{ (NO)}$ $= 1.58^{+0.15}_{-0.16} \text{ (IO)}$ mass ordering δ still unknown still unknown see also: http://globalfit.astroparticles.es

S. Gariazzo

"Neutrino physics"

Fellini general meeting, 04/03/2021

5/10

Absolute neutrino mass scale

[KATRIN, PRL 123 (2019)]

Neutrino nature: Dirac or Majorana?

[Agostini, Benato+, PRD 2020]

Neutrino nature: Dirac or Majorana?

Neutrino nature: Dirac or Majorana?

[Agostini, Benato+, PRD 2020]

Neutrino nature: Dirac or Majorana?

Perspectives of current, planned and future experiments:

Some of these experiments are already ongoing

Much to discover in the next years!

See talk by G. Benato

Neutrinos for multi-messenger searches

neutrinos can travel large distances without interacting!

Perfect for studying far sources in multi-messenger context

S. Gariazzo

"Neutrino physics"

Fellini general meeting, 04/03/2021

Neutrinos for multi-messenger searches

More info obtained if combining photons and neutrinos

(and gravitational waves?)

see talk by M. Lamoureux

History of the universe

History of the universe

History of the universe

see talk by S. Gariazzo

"Neutrino physics"

Fellini general meeting, 04/03/2021

Neutrino spectrum

1 Backup

S. Gariazzo

Cosmological neutrino mass bounds

Cosmological neutrino mass bounds

Cosmological neutrino mass bounds

