# Autoencoders for VIRGO GW signal analysis

#### **First ML-INFN Hackaton**

L. Rei<sup>1,2</sup>, F. Di Renzo<sup>3,4</sup>, N. Sorrentino<sup>3,4</sup>

1:Università di Genova, 2:INFN Genova, 3:Università di Pisa, 4:INFN Pisa



## **GW and GWOSC**

#### International Gravitational Wave Observatory Network (IGWN)

Data are freely accessible via GWOSC



Three antennas to listen to the Universe

Data easly accessible with dedicated python software

### **Gravitational Waves**

Gravitational waves are 'ripples' in space-time caused by some of the most violent and energetic processes in the Universe



#### **First Observation**

The first direct observation of gravitational waves was made on 14 September 2015 and was announced by the LIGO and Virgo collaborations on 11 February 2016







#### How many GWs now?

Tens of events, many populations and physics to explore









#### **Autoencoders**



- Dim(X')=Dim(X)
- Dim(Z)<Dim(X)
- X'->X

Learn a representation for a set of data, typically for dimensionality reduction, by training the network to ignore signal "noise".

#### Workflow

- Explore and transform GW data;
- Create your autoencoder model, play with batch size, epochs, layers and regularization;
- Test with random gaussian data;
- Apply to GW data chunks;
- Plot output and compare with input data.