
Hands-on:
Introduction to Keras

A.Rizzi (Uni/INFN Pisa)
ML-INFN Hackaton - June 7th 2021

Keras

● Keras is a python library that allow to build, train
and evaluate NN with many modern technologies

● Keras supports multiple backends for actual
calculations

● Two different syntax are usable to build the
network architecture

○ Sequential: simple linear “stack” of layers
○ Model (functional API): create more complex topologies

● Multiple type of “Layers” are supported
○ Dense: the classic fully connected layer of a FF network
○ Convolutional layers
○ Recurrent layers

● Multiple type of activation functions
● Various optimizers and gradient descent

techniques

2

Other common tools

Common alternative to keras

● Pytorch
● Sonnet
● Direct usage of TensorFlow (or other backends such as Theano, Torch, …)

○ Need to write yourself some of the basics of NN training
○ Especially useful to develop new ideas (e.g. a new descent technique, a new type of basic

unit/layer)

3

Keras Sequential example

4

Keras “Model” Functional API

A NN can be seen as the composition of multiple functions (one per layer), e.g.

● A simple stack of layers is: y=f5(f4(f3(f2(f1(x)))))
● A more complex structure could be something like

● The functional API allow to express the idea that each layer is
evaluated on the output of a another layer, i.e.

x = Input()
layer1=FirstLayerType(parameters) (x)
layer2=SecondLayerType(parameters) (layer1)
layer3=ThirdLayerType(parameters) (x)
layer4=FourthLayerType(parameters)([layer2,layer3])

5

Input “x”

layer1

layer2

layer3

layer4

y=f4(f2(f1(x)),f3 (x))

An MLP in keras

6

from keras.models import Model

from keras.layers import Input, Dense

x = Input(shape=(32,))

hid = Dense(32, activation=”relu”)(x)

out = Dense(1, activation=”sigmoid”)(hid)

model = Model(inputs=x, outputs=out)

model.summary()
from keras.utils import plot_model

plot_model(model, to_file='model.png')

From the ~1995 to ~2010
from keras.models import Model
from keras.layers import Input, Dense

x = Input(shape=(32,))
hid = Dense(32, activation=”sigmoid”)(x)
out = Dense(1, activation=”sigmoid”)(hid)
model = Model(inputs=x, outputs=out)

from keras.models import Model
from keras.layers import Input, Dense

x = Input(shape=(32,))
b = Dense(32,activation=”relu”)(a)
c = Dense(32,activation=”relu”)(b)
d = Dense(32,activation=”relu”)(c)
e = Dense(32,,activation=”sigmoid”)(d)
model = Model(inputs=x, outputs=e)

7

A “Shallow” Multi (=2) Layer Perceptron, aka MLP

A “Deep” Neural Network
aka Feed Forwards Fully Connected
(or Dense) network

Training a model with Keras
from keras.layers import Input, Dense
from keras.models import Model

This returns a tensor
inputs = Input(shape=(784,))

a layer instance is callable on a tensor, and returns a tensor
x = Dense(64, activation='relu')(inputs)
x = Dense(64, activation='relu')(x)
predictions = Dense(10, activation='softmax')(x)

This creates a model that includes
the Input layer and three Dense layers
model = Model(inputs=inputs, outputs=predictions)
model.compile(optimizer='rmsprop',
 loss='categorical_crossentropy',
 metrics=['accuracy'])
model.fit(data, labels) # starts training

Those are numpy arrays with your data
8

Can be lists of Inputs in complex topologies
(but then other things need to be list too,
e.g. losses or the arguments of “fit”)

Keras basic layers (go to https://keras.io/api/layers)

● Basic layers
○ Inputs -> name says it all
○ Dense -> name says it all
○ Activation -> you do not really need it (see next slide)
○ Dropout -> introduce dropout for regularization

● Convolutional layers
○ Conv1D, Conv2D, Conv3D
○ ConvTranspose or “Deconvolution”
○ UpSampling and ZeroPadding
○ MaxPooling, AveragePooling
○ Flatten

● More stuff
○ Recursive layers
○ ...check the keras docs...

9

https://keras.io/api/layers

Activations

Losses

Optimizers

Callbacks

from keras.callbacks import EarlyStopping, ReduceLROnPlateau
train
history = model.fit(X_train, y_train, epochs=n_epochs, batch_size=batch_size, verbose = 2,
 validation_data=(X_test, y_test),
 callbacks = [
 EarlyStopping(monitor='val_loss', patience=10, verbose=1),
 ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=2, verbose=1)
])

13

● During training some “callbacks” can be passed to the fit function
○ E.g. to monitor the progress of the training
○ To adapt the training

■ Stop if no improvements in the last N epochs
■ Change learning rate (reduce) if no improvements in the last M epochs

○ Some callbacks are predefined in keras, other can be user implemented

Assignment 1

● Partition a 2D region with a simple function that returns true vs false having x1,x2 as arguments
○ E.g. x1>x2 or x1*2>x2 or x1 > 1/x2 or … whatever...

● Generate, e.g. 1000 samples
● Create a classifier with a MLP or a DNN with similar number of parameters that correctly classifies

the points in the plane as belonging to the red or blue category

Start from the notebook named
SimpleClassificationi_student.ipynb

should be in:

/shared/yourUsername/RIZZI

Look for #FILL HERE# , #FILL THE DOTS# , etc.

14

Assignment 2 (tomorrow)
● Let’s try to implement a regression with DNN in keras
● Invent a function of x1,x2,x3,x4,x5
● Generate some data
● Create a Feed Forward model (with 1 or more hidden layers)
● What should we change compared to the classification problem?

○ What is the loss function to use?
○ Which activation function in the last layer?

● Try to make a histogram of the residuals
on the validation sample

○ residuals=(y_predicted - y_truth)
● Try adding some callbacks

15

Start from this notebook:
SimpleRegression_solution.ipynb

Try to answer these
questions before

tomorrow morning
(see this morning slides)

