ANN: PRINCIPLES AND
COMMON ARCHITECTURES

S. Giagu - 1st ML_INFN Hackathon

Online/INFN Cloud - 07.06.2021

ARTIFICIAL NEURAL NETWORKS

the most popular approach to deep learning to date

ANN is a mathematical model able to approximate with high precision a generic functional form:

fi:R"—> R"™ y=f(x) — ANN F: y = F(x)

- shallow analogy with biological neural networks, and in a more precise mathematical / computational language is a composition
of functions connected in chains described by graphs (eg Feed-Forward ANN can be represented as direct acyclic graph)

Hidden
Input

Output + architecture: interconnected group of simple identical computational units (neurons)

processing: input information analysed according to a connectionist computational approach

<>—.CD/ — collective actions performed in parallel by the neurons

learning: behave as an adaptive system, the network structure dynamically change during the
Q/ learning phase based on a set of examples that flow through the network during the training
step
Properties:

non linear response obtained by non linear neuron outputs
hierarchic representation learning obtained by implementing complex multilayered topologies

BASIC ARTIFICIAL NEURON MODEL: TRESHOLD LINEAR UNIT
- artificial neuron (McCulloch-Pitts (1943) and Rosenblatt (1962)):

Wei * receives in input n signals x; and outputs y given as
1 eights " . -
composition of a synaptic function:
0
Activation L Wi
x1 o W1 —_— — t . .
z—w0+2w-x-—w0+wx w=| :
Input w, _— [y . - W
/ =1 m
E w Output - .
X m Synaptic utpu - and an activation function lif w'z > —w,
Xx=|: (for example a step function): a(z) = e
X Xm sum Ditw'z < —w,
X2 |
~ A
y = a(z) = a(wy + x'w) N -
N a single layer of TLU with step 5 AB B

activation can only learn to
solve problems with linearly
separable classes

extension to multilayers with non-linear activations allows to effectively learn complex hypersurfaces 3

MULTILAYER PERCEPTRONS OR FEED-FORWARD NN

- one of the most used ANN architectures it the so called Feed-Forward NN

* neurons organised in layers: input, hidden-1, ..., hidden-K, output

- possible only connections of neurons of a given layer towards the next: acyclic direct graph

- all possible connections are present (dense layers)

FF-ANN
acyclic direct
graph

w®

ai(zZq1)

hidden layer
MLP with 1 HL

T =wl)+ 2 xwh

0i

(2)
a,(Z)w;

* NN behaviour determined by:
- weights wj;
- network topology (#layers, size of each layer, ...)
- activation function of each layer

4

non-linear activations allows to learn complex and non linear patterns ...

ANN ARE UNIVERSAL APPROXIMATORS

it can be demonstrated that a feed-forward
network with a single hidden layer containing a
finite number of neurons with non linear
activations can approximate continuous
functions on compact subsets of Rn, under
mild assumptions on the activation function

F(x) = Z ca(wy; + W'X)

| 1= Fwlde <o

Universal approximation theorem proof:
- unbounded, sigmoid: here
- bounded, RelU, arbitrary depth: here

Shapés

Structure Decision regions
() sub-spaced delimited
/N by hyperplanes
/'Q'\

By

convex regions

%

O

N
/

O

foss

arbitrary shaped
regions

\
X

“

A

IMPORTANT: the theorem doesn’t say nothing about the effective possibility to learn in a
simple way the parameters of the model, all the DNN practice boils down in finding optimal

and efficient technigues to do that ...

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.441.7873&rep=rep1&type=pdf
https://arxiv.org/abs/1709.02540

ANN AS NON LINEAR MAPPING ALGORITHM

* An ANN with non linear activations can be thought as an algorithm that learn two tasks at the same time:

LEARN A (LINEAR) MAPPING a similar approach as in other
k/l%PRPI\IINAGNC?FNTIL-:EIIENAEUT BETWEEN LETENT classical ML techniques: like SVM
REPRESENTATION AND TARGET ®*Rd— R

gSENEEEEEEEEEESR ‘---Hl. ------------ N

g g(x) = wtd(x)+wo

mapping
via ¢(.)

problem with N>d
dimensions

mapping
via ¢(.)

shallow neural network deep neural network

evolution of this approach: Deep-NN e § o - § § § § o
S 30 $ 333823
a DNN is a ANN with >1 hidden layer ... ° o ° Y

a

input layer hidden layer output layer input layer hidden layers output layer 7

WHY GOING DEEP WORKS?

* the universal approximation theorem tells us that already a FFNN with one hidden layer can
approximate any function with arbitrary precision

* however deep architectures are much more efficient at representing a larger class of mapping
functions:

* problems that can be represented with a polynomial number of neurons in k layers require an
exponential number of neurons in a shallow network (Hastad et Al (86), Y.Bengio (2007))

» other advantages: VGG-56 —
#weights

* sub-features (intermediate representations)
can be used in parallel for multiple tasks
performed with the same model

e overparametrization in very deep NN
seems to have beneficial effects
iIn smoothing the loss function landscape

VGG-110 °

WHY GOING DEEP IS DIFFICULT: VANISHING GRADIENT

the main problem in the use of DNN architectures is related to the vanishing gradient

the first layers of a deep NN falil to learn efficiently

e reason: during backprop in a network of n hidden layers, n derivatives of the activation
functions will be multiplied together. If the derivatives are small then the gradient will
decrease exponentially as we propagate through the model until it eventually vanishes

SOLUTIONS:

. use activation functions which do not produce small derivatives: i.e. RelLU, LeakyRelLU, Selu, ...

. use batch normalisation layers: in which the input is normalised
before to be processed by the layer in order to constraint it to T; — 7y Li — MB - B
not reach regions of the activation function where derivatives ’

2
are small (additional advantage: prevent the target of each layer Op T €
from moving continuously during the training (internal covariate shift)) x
weight layer
. use residual networks: in which (residual) connections that do not pass through rx) [relu N
the activation functions and propagate information to subsequent layers weight layer identity
F(x) +x

LEARN THE PARAMETERS (I.E. TRAINING OF THE ANN)

- training consists in adjusting the weights according to a given cost function (loss) in order to optimise the

performance of the model wrt a specific task

- weights and biases: stochastic gradient descent with back-propagation
- hyperparameters (parameters whose values are fixed before the learning process begins) optimisation: heuristic approaches
(autoML.: grid or random search, bayesian-opt, ...)

Start by observing that a NN model can be always expressed as a composition of functions associate at each layer
Example: for a deep-NN with d hidden layers: y = ANN(x) = Floup)(fd(...£Q(£D(x))))

Example: a MLP with: nh: number of neurons in the hidden layer

- a single hidden layer with a: tanh / /

- an output layer with a: linear Mot
eda

- no bias weights
(2) (1) 2)
E tanh[z E tanh| E XW,]w]

weight assignhed to the connection f
between the j-th neuron of the / weight assigned to the connection between the i-th neuron

hidden layer and the output neuron of the input layer and the j-th neuron of the hidden layer 10

Nvar: NUMber of input features

TRAINING AND GRADIENT COMPUTATION

- during the training N examples are presented to the network: T{x® y0} (i=1,...,N)
+weights are initialised to random values (small and around zero): for example ~N(0,0)

- for each event the output of the model y(x¥) is calculated and compared with the expected target yi by
means of an appropriate loss function that measures the "distance” between y(x) and y;

example: MSE

] < N N 1, . N
L(w) = N,-zzl L; (y?, 50| w)) L (y0, 5000 | w)) = > (0 - A(z)(x(l)‘w)>2

- the vector of weights is chosen as the one that minimizes L: w* = argmin|L(w)]

loss landscape

W
+ the minimum is sought with GD / SGD techniques ... W) = w9 —»pV L(T|w)

to update the weights of all the layers of the network is necessary to
calculate the gradient of complicated non convex functions with respect
each weight, and to evaluate its numerical value. Doing it in a simple and
efficient way iIs called Backpropagation or Backprop procedure S

BACKPROPAGATION

* the training of an NN takes place in two distinct phases which are repeated at each iteration:

 Forward phase: the weights are fixed and the input vector
IS propagated layer by layer up to the output neurons
(function signal)

 Backward phase: the A error is calculated by comparing
the output with the target y and the result is propagated back,
again layer by layer (error signal)

— Function signals

<%~~~ Error signals

* each neuron (hidden or output) receives and compares the function and error signals

* back-propagation consists of a simplification of the gradient calculation obtained by applying recursively the rule
of derivation of compound functions (chain rule)

oL(w) OL(W) " a_y 0L(w)

1 Va\N
L(w) == — y)°
Wi 2 w2 9 2

8W1 0}7 6W1 @)A/

A available at the output >
g =awx+b) Y =aywyz+ by) analytically calculable 12

LEARNING CURVES

* at the start of the training phase when the network weights have been initialised randomly (with small random
values) the error on the training set (the loss value) is typically large

* with the iterations (epochs) the error tend to decrease until it reach (typically) a plateau value that depends on:
the size of the training set, the NN architecture, initial value of the weights, the hyper-parameters ...

 training progress is visualized with the learnign curves (loss or accuracy or any useful metrics vs epochs)

[0SS

e as usual in ML multiple datasets (and/or cross validation) are needed: validation

» for the training phase

» for the optimisation of hyper-parameters and the training stop criteria

 to evaluate the performances of the trained model

T — . . , = epPOchs

! 2 3 4 5 6 /7 & 9 10 1

13

NOTE: WEIGTH INITIALISATION

+ general criterion: the initial weights must break the symmetry of the system

- If two hidden neurons with the same activation function are connected to the same input then they must
have different initial weights, otherwise they will be identically updated by a deterministic algorithm

- standard rule:
- biases fixed to a fixed value (ex. zero)

- weights randomly initialised around zero (example N(0,0) or U[-€,€])

+ large values for o bring strong symmetry breaking and helps minimise redundancies in the network architecture, but may
generate numerical instabillities in deep networks

Most popular heuristics:

f the | N |0 : [] : : \/ \/
m: # Inputs of the layer , O = — ,
n: # outputs of the layer \/ m \/m \/m n+m \ n+m

normal uniform (for dense layers) Glorot

14

STOCHASTIC GRADIENT DESCENT WITH MOMENTUM

minimisation of the loss function is performed by gradient descent (GD)
techniques

- for large datasets GD becomes computationally inefficient and it is
replaced by a stochastic implementation:

weights are updated after having presented to the model sub-sets (batches)
of the entire dataset T: & — LW

L(W) Iniﬁal '/ Gradient

!
!
!
i

(k)y — w
- T is divided in m sub-samples (batches) T+...Tm) =

weights are updated using each subset Ti:

wktD = W) _ kD)

-~
-
-
-
-~
-~
-

-
-
-

-~
R T
-~ -
-
-
-~

vt = gv® + (1 =) VL, ((k))

previous step gradient w the additional
direction direction S~ fluctuations also
| " help to avoid local
sSpurious minima

MOMENTUM:
* for a = 0 we have classic GD/SGD
e for a = 1 the gradient descent is ignored and the weight update follows the previous direction (momentum)

. typically: a ~0.9-0.99 15

small n

VARIABLE LEARNING RATE

* n affects the speed of convergence:

 a small value can result in excessive slowness and an increase in the
probability of being trapped in local minima

* a large value can cause the algorithm to diverge

large n

solution: Variable Learning Rate and Adaptive Learning Rate Optmizers cause drastic

during the iterations the learning rate decrease according to a predetermined
schedule or adapt following a specific strategy

Training Loss

Reduce learning rate

!

100

updates leading to
instabilitL

ADAptive grad: the learning rate associated with each weight is individually scaled inversely
proportional to the root of the historical sum of squares of the gradients for that parameter:

» weight associated to features that appears with high frequency: riduce n

>~ weight associated to features that appears with low frequency: increase n

several Iimplementations:
Adadelta, RMSProp, Adam, ...

16

CHOICE OF ACTIVATION FUNCTIONS FOR THE HIDDEN LAYERS

In general, any function that met the universal approximation theorem conditions is fine. In practice some of them
work better for specific NN architectures ...

the most popular:

10 - allows non linear dynamics
Re LU - faster convergence of the NN because doesn’t saturate
Ina,x(()7 g;) - No vanishing gradient problem
= - - induce gradient sparsity (0 output for negative values, i.e. fewer active neurons). This

can be an advantage or an issue depending on the specific ANN architecture. Needs to
be monitored and in case of problems replaced with alternatives

ELU ¥

10-

T x>0
Singid {a(ew —-1) z<0 - i
o(x) = 1+(13_.,,,. - | .
should not be used in dense and convolutional layers:
- gradient vanishes away from x=0 — vanishing gradient problem
tanh - sigmoid has output not centered in zero — affects SGD dynamic (zig-zag instabilities)
tanh(x) P 1.0 - used in RNN to control gated I/O and often in dense layers in GAN to avoid sparsity

POPULAR ACTIVATION FUNCTIONS FOR THE OUTPUT LAYER

10

Identity (linear): standard choice for regression tasks

-10 | 10

Sigmoid: used in binary classification problems (2 classes) with single
output neuron or multilabel (multiple mutually inclusive classes) or when
the output features are numbers in (0,1)

e’ Softmax: Rn— [0,1]n
yi — P - soft version of the argmax output
Z er - often used in multi-class classification tasks with one-hot encoded labels
j=1 - output of each neuron € (0,1) and interpretable as a probability () yi=1)

LOSS FUNCTIONS

Modern ANNSs are trained using the maximum likelihood principle, consequently the most used loss functions are
simply equivalent expressions/approximations of the negative log-likelihood:

L(w) = — ET[logpmodel(y ‘X, w)]

most popular forms:
for regression problems

A 1 N A
MSE MSE = ||y = y||, = Iy; Z (y =) (also MAE, UberLoss, ...)
i=1

| 1 & . g
binary cross-entropy H (g) = Joe(p) + (1 — v)loe(l — p.) P = predicted probability (0,1)
(Q) Y ;:1, y;log(p) + (1 — y)log(1l — p)) " — label (0 or 1)

given two distributions p and g, Hp(q) measures the average number of bits needed to identify an event extracted
from the set, when the p model is used for the probabillity distribution, rather than the "true” distribution g. It is
usually the best loss function to train ANNs that output probabilities (example: softmax)

NOTE: generalisation for multi class problems
- categorical cross-entropy (one-hot encoded label)
- sparse categorical cross-entropy (integer labels) 19

MOST CRITICAL ASPECTS IN THE TRAINING OF ANNs

* fraining speeaq:

* mitigated by using stochastic-learning, momentum, adaptive learning rate (Adam o RMSProp), non
saturating activation functions (RelLU, ...), smart weight initialisation, and scaling of the input features

* but most of all by using dedicated coprocessors (GPUs, TPUs, ACAPs, SOCs, FPGAs, ...)

e hardcore overfitting:

* the main problem for overparametrized models as deep neural networks with O(M) of weights
* inevitable consequence of the trade-off between variance (large expressive power) and bias (generalization)

* issue controlled by applying a set of regularization technigues aimed at reducing the error on the test set
(typically at the expense of error on the training set)

* regularisation technigues impose constraints on different aspects of the NN model such as the complexity of
the NN architecture, the error reduction on the training set, the representation of the loss function landscape,
the size of weights, etc... so that will be more difficult for the model to learn characteristic that are specific

of the training set
20

DROPOUT

* very popular and powerful technique to prevent overfitting in architecture of deep neural network
* imposes constraints on the complexity of the Neural Network architecture
* neuron connections are eliminated based on a defined probabillity

* forces the model to not rely excessively on particular sets of features

before after

used routinely in the context of ConvNETs in which it can sensibly
increase performance on the test set

21

EARLY STOPPING E NOISE INJECTION

e early stopping: imposes constraints on the error reduction on the training set

* the training process is stopped as soon as the loss on the validation sample reaches a plateau or start to increase

Error

Validation

Training

early stopping Epochs

* noise injection/information loss: makes it more difficult for the
network to learn specific characteristics of the input features

 random flip of labels
 random occlusion of pixels or feature bits
* adding withe/colored/gaussian noise to the features

EFror

A

bound on test error

confidence term

training error

Noise addition

e Addition of noise
e More tolerance to quality
variation of inputs

Information loss

e Parts of image ignored
e Mimics potential loss of
parts of image

h

22

DATA AUGMENTATION

* the best way to make an ML algorithm to generalize better is to train it on larger and more expressive data

* but having more data is normally the real issue in ML/DL — solution: artificially increase the dimension of
the training set

Original Flip Rotation Random crop Color shift Contrast change

e Image without any e Flipped with respect to an » Rotation with a slight e Random focus on one part e Nuances of RGB is slightly e Luminosity changes
modification axis for which the meaning angle of the image changed e Controls difference in
of the image is preserved e Simulates incorrect e Several random crops can e Captures noise that can exposition due to time of
horizon calibration be done in arow occur with light exposure day

+ modern approaches are based on generative DL (GAN, VAE, ...)
IMPORTANT: the applied transformation should not bias the relevant “physics” of your data 23

ARCHITECTURES FOR VISION: CONVNET/CNN

* CNN are specific DNN designed to excel in image recognition tasks

e operate directly on the images (raw “pixel” information organised in a fixed mesh)

* the expressive power of the model is constrained based on assumptions on the properties of the input:
 symmetrical spatial structure of the input: pixels organised in a fixed size mesh
e translation invariance (equivariance): sub-features in the image remain the same in different points of the image

» self-similarity: two or more identical sub-features present in the image can be recognized with a single filter that identifies
one of the sub-features

 compositionality: a complex feature made of several sub-features can be recognized by identifying only few sub-features

* |ocality of the features: to identify a sub-feature it often takes just a few pixels concentrated in a small portion of the image
itself

* Implementation: apply layers called convolutional filters that operate on the input by recognizing the local sub-features present there
* the same filters use shared parameters (weights) and sequentially analyse all portions of the image

« weights of the filters are not fixed but are learned

 CNN learns from the training data sample the best set of weights to solve the task given the chosen architecture
24

HOW A NN “SEE” AN IMAGE ...

images for a computer are essentially meshes (tensors) of numbers

157 (153 (174 (168 [150 152 (129 [18) [172 [16] | 156 186

156 1182 (163 | 74| 75 &2 ¥ | W10 (290 (180 =

180 (180 | SO | 4| M 6) 10 33 48 106 1188 |
26 |19 124 173 1101 J120 (204 (166) 16| 56 w0
194 | 68 (137 (28] (237 (209 28 208 207 BF N W

172 1106 (207 1233 1283 (24 (200 |20 218 8 94 | T4 e
188 | 88 (179 (209 185 (296 [27] (158 |18 | 75| 20 &6
189 | 97 166 | &4 | 10 (168 (14| 1 M1 62 12 w48
199 (168 (191 193 168 (227 178 (143 (182 (106 | 3 90
206 1174 (156 1252 (236 (23] (149 (178 218 | 43| 95 Ima
190 (276 (176 (149 (236 (187 | & (150 79 ¥ 28 W
190 [224 (147 (108 (227 1290 127 (102 | 3 (101 (255 2

190 (274 (173 | &6 (103 (143 | 9% | SO 2108 (249 05

187 (196 (205 | 7% 1) 8| 47 0 8§ W7 (285 2D
183 | 202 | 237 [145 0 07 1277108 200 138 243 28
196 1206 1123 (207 (177 |11 1123 (1200 (175 F 13| % 28

gray scale image with 8bit depth: 12x16x1 intensity € [0,250]

color image with n-bit depth: m1xm2x3 with each RGB intensity € [0,2"]

credit MIT Al course o5

CONVOLUTIONAL FEATURE EXTRACTION LAYER

» used to identify similar features that are present in different position of the image

* input neurons (one for each NxN pixels of the image) are NOT fully connected with all

e based on three basic ideas:

regions of the image called local receptive fields
* local receptive field =

» shared-weights (kernels) field there will be an hidden neuron in the hidden layer
e pooling layers
local receptive field ©oooaas, pUL neuTOnS o
input neurons Sy5 28888 ——————o : >

-y the neurons of the first hidden layer. Connections exist only for localised and small

* the local receptive field is shifted through the whole image: for each shifted receptive

24 = 28-5+1
~a

28 x 28 input neurons first hidden layer: 3 x 24 x 24 neurons

;o

} . l 1 input neurons)
88009;“&& ldden neuron 23888 first hidden layer
44054 0
COOO0T
Slslvle Lo el }4
stride S=1

20

COnVOIu.hOn local receptive field or 1/1/1/0/0 3x3 (5-3+1)
operation) convolutional kernel o/1[1[1]0] [a
W _— 0jof1[1]1

o|{0f1]1|0

0[1(1|0]0
Convolved
Feature
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)

_> sobel = np.array([[-1, -2, -1],

[0, 0, 0],

[1, 2, 1]])
filtered_image = cv2.filter2D(gray, -1, sobel_y)
plt.imshow(filtered_image, cmap='gray')

e shared-weights:
 all the hidden neurons of a given hidden layer share the same weights — all neurons
of the hidden layer detect the same sub-feature, only in different regions of the]

image

300 R R R R AR 2 N
0 50 100 150 200 250 300

» as the CNN has to identify many sub-features: there are many convolutional kernels
each one with an associated hidden layer: input image (n,m,3) — output (k,l,d)

* huge advantage wrt DNN: much smaller number of weights to learn ...

27

NON LINEARITY

after the convolution operation, an activation function is applied to each (neuron) of the filtered image (ex.
RelLU: all negative values are set to zero)

- emphasize only some of the dominant characteristics of the sub-features selected by the filter

Input Feature Map Rectified Feature Map

white ='positive values Only non-negative values

before RelLU after RelLU

28

e pooling layers:

* in addition of the convolution layers a CNN has also other layers called pooling layers, usually used
after each convolution layer. They performs a downsampling operation: simplifying the information in
output from the convolutional layer (less weights) and making the NN less sensitive to small
translations of the image

* motivated on the fact that once a sub-feature is found, to know the exact position is not as important
as to know the relative position wrt the other sub-feature in the image

Type Max pooling Average pooling
Each pooling operation selects the Each pooling operation averages the
Purpose : : .
maximum value of the current view values of the current view
Single depth slice
— Jl1]1]2]4
avs max pool with 2x2 filters
OGN 7 | 8 and stride 2 6
: 3 | 2 . 3
lllustration
—p 1 | 2 .
y
» Preserves detected features « Downsamples feature map
Comments

» Most commonly used » Used in LeNet

29

FULL CNN: CONV BLOCKS + DENSE MLP STAGE

- generally after the convolutions the output of the convolutional layers is connected via a flattening layer
with one or more dense layers (DNN), that are used to optime objectives: class scores (classification),
mapping (regression), etc...

Example: LeNet (Yan LeCun)

multi-staged CNN for classification: (Conv2D+MaxPooling)x2 + 2xDense + output layer (soft max)

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT v\
6@28x28
32x32 S2:f. ma CS: layer

6 1401 o Fe: ayer QUTPUT

‘ | Full oom{ectoon | Gaussuan connections
Convolutions Subsampling Convolutions Subsampling Full connection
detects details focus on overall maps high level
(segments, arcs, ...) shapes representations to targets

30

Softmax
FC 1000

——
MODERN CNNs
philosophy: deeper Is better ...
» AlexNet: better backdrop via RelLLU, dropout, batch normalisation, data augmentation

L

| Pool

- VGG: smaller 2D kernels(3x3) with more convolutional blocks to induce more non-
linearity and so more degree of freedom for the network
» GoogleNet (Inception): T

Pool

Inception module:
- 2D convolutions with different kernel sizes process the same input and then are concatenated

- multi-level feature extraction at each step: general features captured by 5x5 at the same time
with local ones captured by 3x3

- additional intermediate classification tasks to inject gradient in intermediate layers ...

| Pool |

Pool

|

J A Ol |

1 1x11 Ol ! e ,
[oot] ot]

i AlexNet VGG19
/ 3x3 convolutions 5x5 convolutions
1x1 convolutions 4 4
\1)(1 convolutions 1x1 convolutions
— X

ResNet-152

RESNET, DENSENET, XCEPTION 60 MPar

X
going deeper increase the vanishing gradient problem residual learning in weight layer —_—
ResNet help avoiding it, moreover each block learns the residual wrt the F(x) L relu . | *}m
identity (easier task) weight layer identity T
F(x) +x !..+i
evolutions of the idea: &
DenselNet: connect entire blocks of layers to one another helps in ;+. s
identifying and use of diverse representations as we go deeper ... ﬁ
Xo Xception = Inception + ResNet: same parameters as :2
o InceptionV3 but better performance ... sl
leverage Depthwise Separable Convolutions +
8 < e Gl @D
% Conv2D (3x3) = DSConv2D: 3x1 + 1x3 */9

lv-a.o-::l--l]

DenseNet ... 152 layers

32

gl H, % f

3 12 8
’ ®

H, 4 -

o - I 9

4 >
2 > 8 8
3 1
) 8

ANN ARCHITECTURES FOR UNSUPERVISED REPRESENTATION LEARNING: AUTOENCODERS

* non-supervised algorithm that try to identify common and fundamental characteristic in the input data

e combines and encoder that converts input data in a different representation, with a decoder that
converts the new representation back to the original input

* trained to output something as close as possible to the input (i.e to learn the identity function)

ENCODER DECODER

M” z - “trivial” unless to constrain the network to have the hidden

Q
input e”y&eﬁ‘g"@ representation with a smallare dimension of the input/output
v(5) ‘,“,W‘\V * In such case the network build (learn) “compressed”

representations of the input features: xeR°>—zeR3

' | output = Input
e bottleneck @ P P

33

AUTO-ENCODER ¢, 0% = arg ngax— D Lx®,50) =
IMPLEMENTATION g

— arg max— Z L(x®, f(g,(x))
ENCODER: x—7 0
g4(X) : R% — R~

' Z '

4
p
)
;
=
-
e #
p

5

DECODER: z—x
fo(2) : R* = R“

trained so that: Output = Input
Lx,?) = ||x= %] or L(x X) = 2 [x; log(x,) + (1 — x)log(l — Xx,)]

\

NOTE: L do not depends on dataset labels (unsuperwsed learning) 34

AE: RECONSTRUCTION QUALITY

Original images
(ground truth)

2D latent space

@
D 4
D \
2
4 Y
9 5
30
¢ 7
b ¢
c 9

HWNL~~w—DONp
ANGC2aWIHDL~OUPD
O~NO"N L =~—IN\N

- latent space acts as a "compressor” of information, a certain level of smoothing (inform. loss) is inevitable

- most important limitation: the learned latent space is a non-continuous representation and does not allow
interpolations and / or to structure the space appropriately, i.e. cannot be used to generate events (for this scope
there are specific generative architectures VAE, GAN, Normalizing Flows, Invertible-nets, etc...)

35

ANN ARCHITECTURES FOR SEQUENCES: RECURRENT NEURAL NETWORKS

* RNN are specific ANN architectures optimised to identify long-term correlations in sequence of informations
of variable lengths (example: natural language processing, signal processing, time series forecasting, etc...)

 typical task for a RNN: given a sequence of features (text, music, ... a list of charged tracks parameters),
predict one or more targets (the next word on a phrase, the weather in the next 24h, the flavour of a hadron

jet in an hep experiment, ...)

* a RNN should be able to: O
* take Iin input sequences of variable length

* be able to keep track of dependences between elements that T
are distant in the sequence

* be able to keep information on the order between the AN N
elements of the sequence

* have shared parameters (weights) so that identified correlations
between elements can be transferred in diverse points of the

sequence

36

RNN IMPLEMENTATION

* a RNN processes the input in a loop (recurrent connection) that allows the persistence of the informations during
the entire processing of the sequence’s elements

 pbase module: A is a NN that analyse the t element of the input sequence x: and produce the output h: (hidden
state). h: is passed to the same network during the processing of the next element of the sequence

~» FORWARD PASS R

@-wp & ¢ ¢

Lo Ly L, Ls

f 1 1 t can be thought of as a

series of multiple copies

Yo /1 22 e & of the same conventional
whyI WnyI Why[Why] neural network, each
ANN h: —)]_ _[' passing a message to its
W hn

y SUCCESSOr

old-state Vo vl "ol vl

hy = f,(h_1, X)) =
/? the same function 7, with the same set
sequence Input at step of weights is used to process each

_ t t
— tanh(Whhht_1 + thxt) element t of the sequence ... -

RNN AND LONG TERM DEPENDENCIES

0 Q) ®
e T\ e T\ 4 T\
1k - in RNNs unbounded activations (like ReLU) cannot be

—> s —> —> . ey
A | A used as they create instabilities

- tanh or sigmoid are OK suffer vanishing of the gradient

)) &)

problem solved in LSTM RNN (Hochreiter, '97) with a "software trick": instead of having a single neural layer, it
has four, which interact in such a way to implement a sort of parallel data-flow which at each step t makes the
previous data available to each layer of the network w/o being affected by gradient dilution

: L

Ct— 1"’

T\ key element: cell-state Cq

A is a memory units (“conveyor belt”) to which is
possibile to add or subtract information using
> “gate” structures

38

LONG SHORT TERM MEMORY NETWORKS

gate: NN-layer with sigmoid activation and a point-wise multiplication

(0= output €[0,1];

i every LSTM has 3 gates:
- f: forget gate (controls deleting from the cell-state)
0) . "
T - I: input gate (controls writing on the cell-state)
- 0: output gate (controls the output on hi)

the backprop from Ct = Ct-1 doesn’t requires multiplications for tanh/sigmoid — no gradient dilution ...

every publication implementing a LSTM has used a slightly different version of the original algorithm, so
you’ll find it with different names ...

GRU (Gate Recurrent Unit):

LSTM with “peephole”: combines the gates and unify

[‘ L gate layers can see the hidden state with cell-state to
cell-state simplify model and number of

— parameters (one of the most

used RNNSs)

39

KEEP IN TOUCH ...

40

https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
https://orcid.org/0000-0001-9192-3537

ADDITIONAL MATERIAL

FIRST HIGH PERFORMANCE CNN: ALEXNET

* based on Krizhevsky et Al. architecture winer of the Imagnet 2012 contest

* dev. framework: Caffe (Berkeley Vision Deep Learning framework: http://caffe.berkeleyvision.orq)

same top-down approach as LeNet with successive filters designed to capture more and more subtle features

+ improvements:

55

. . 27
1. better back-propagation via RelLU . 13 \
55
2. dropout based regularisation —+—— —~ |
| 5 { hag AN 301 |13 L —»
. . 27 @ % o] C N\ 3| L-N’
3. batch normalisation ° [L : \
. ,] 43 NN 192 192 128 2048 \/ 2048
4. data augmentation: images presented N 55 27 128 > - \ -
to the NN during training with random 2 | .|| N [N /:000
translation, rotation, crop AN s - = AV - S0 [13 ! »| |Dense
t T N\ ~ [3 ,\ Dense| |[Dense
: . ’ S5\~ 3 |,/
5. deeper architecture: more convolutional] T
_ _ 224 \\].. . > | m— 192 192 128 0o
layers (7), i.e. more finer features strid pooling 2298 2048
Lof4 Max Max
Captured 3 a8 Pooling Pooling

Local Response Local Response Q IeXN ET
Normalization Normalization 492

http://caffe.berkeleyvision.org

feature initialised with white gaussian
noise

fully supervised training

training on GPU NVIDIA for ~1 week
650K neurons

60M parameters

630M connections

o

p T e -

mite ~ container shi

-3 L2

| motor scooter leopar
mite container ship motor scooter pard
black widow | lifeboat | go-kart| jaguar
cockroach amphibian| moped | cheetah
tick fireboat| bumper car snow leopard
starfish drilling platform | golfcart Egyptian cat
*- 5 o B | ¢ @’ & e .E.
— { — p v o SR ¢
L8 LT) 4 | B o o'
: - e i | . \ _ i >

rie musnroom

convertible agaric
grille mushroom grape| | spider monkey
pickup jelly fungus elderberry | titi

beach wagon gill fungus |ffordshire bullterrier | indri
fire engine || dead-man’'s-fingers currant | howler monkey

stride=1 /-\/-\/-\/\

2x2 kernel
6x6 input
stride=2
. | —_> | ~_>
2x2 kernel
6x6 input
stride=2 __ N\
padding = 1
e

&x6 input

SXS output

3x3 output

4x4 output

example: standard convolution2D with kernel (2,2)

stride 1, no padding:
input 6x6 — output 5x5

stride 2, no padding:
input 6x6 — output 3x3

stride 2, padding 1:
input 6x6 — output 4x4

44

OUTPUT AFTER THE APPLICATION OF THE CONVOLUTIONAL FILTER ...

Size of the output after applying the filter: N=" §+ il +1
p W P Pading P Stride S
‘ N

Bistutstcl)
B T Tt
SRR LT
EEEEEFTELT

F
| il

Filter Output

45

CIFAR-10 dataset

e
#weights

presence of
skip connections

ResNET-56

DenseNET-121

46

L1/L2/L3 REGULARIZATION

* idea: constrain the complexity of the model by penalizing large values of the weights, unless it is strongly
requested by the data itself

* method: a penalty is added to the loss function: L(w) = L(w) + Q(w)

L‘I LASSO L2 weight decay L1 + L2 Elastic Net

e Shrinks coefficientsto O o Tradeoff between variable selection
, , Makes coefficients smaller o

e Good for variable selection and small coefficients

(1-a)||w||1+a||w||<1

Qw) =21 —a) | W] +a | w2

47

EXAMPLE: GD WITH L2 REGULARIZATION

regularised loss: L.(w) = L(w) + w 'w
2
gradient: VoLr(W) =V L(W) + aw
weights update: W — W — [V L(W) +aw] = (1 = na)w — nV, L(W)

the effect of L2 on the single iteration is to reduce /"
the vector of weights for a certain factor

‘ C@
done on all the iterations of the training it can be shown that the overall _

effect is to rescaling the components of the solution vector w* of the non : e w\

iIsocurve of L

. . . . - h oint of
regularised problem proportionally to A/(Ai+a), with Aithe eigenvalues of 7 ~ T~ \ NP
. . / \ O\ equmbrlum
the Hessian matrix of L A \
- components in the directions of insensitive w (Aixa) —large reducing effect O , /1 /'
~
- components in the sensitive directions (Ai»«) = unchanged N ./ , isocurve

w1 of () 48

EXAMPLE: GD WITH L1 REGULARIZATION

regularised loss: Lp(w) = L(W) + a 2 | w; |

very different effect wrt the
_ [T L2 case. Due to the
gradlent: VW LR(W) — VW L(W) -|—a31gn[w]

——_ Singularity the solution if
not easy to find analytically

it can be demonstrated that for a loss L with quadratic minimum and "2

diagonal Hessian H = diag[A1 ... An):

Isocurves of L

A . 94 |
W, = 31gn[wl.*] max| | wl.*\ — —.0] point of
/1,° equilibrium
B W

with w* solution vector of the non regularised problem
-Wi* < a/hi= Wi=0

- wWi* > a/Ai = Wi scaled by a/A

wl
ISOCUrves
of Q) 49

L1 acts as a feature selector / sparsifier

GENERALISATION AND BIAS-VARIANCE TRADEOFF

- the choice of the decision boundary is a compromise between:

- performance of the classifier on the training set « minimise variance of the training set
- generalisation capacity of the classifier < minimise the bias on the test set

» In statistical theory of ML it can be demonstrated the Vapnik inequality:

error on training set N: dimension of the
i training set

- (R(f)SRS)+ [N00g(2 N/ +1) ~log(n/4)) 1

7 \)
error on an independent dataset (what we \confidence term (i.e. the
ideally would like to minimize) generalisation error)

* h: Vapnik-Chervonenkis dimension (VC-dimension)
* |s a positive integer that measure the expressive power of the ML model, larger h larger is the
capacity of the model to represent complex boundaries

VAPNIK THEORY: MINIMISATION OF STRUCTURAL RISK

bias-variance tradeoff: by using a more complex model (i.e. larger h) able to reduce the variance,
we pay this with a larger bias ...

. A OPTIMAL CAPACITY
O R(f) lower limit on the test set
LLI ’ / error
UNDERHRTTING generallsatlon _—
: error

"'RS (f) OVERFITTING

training set error

. S
VC dimension: h

possible - fix the training set error (for example making it zero), and minimise the confidence term S\VM, ...

strategies - choose an appropriate model architectures (.e. the capacity) and minimise the training ~ ANN, ...
set error

METHODS TO EXPLAIN DNNs

* Due to its apparent black-box nature, it is inherently difficult to understand which aspects of the
input data guide the decisions made by a DNN

* There is a research sector expanding these days (XAl / XML where x stands for explainable) whose
purpose Is to develop useful methodologies to explain the decision-making process of DNNs

 methods for explaining DNNs can be divided into three main groups:

* Visualization methods: they help to understand the correlations between output and input by
highlighting, through appropriate methods, the characteristics of the input (of the DNN or of
intermediate stages) that strongly influence the output of the network

e Synthesis methods: a separate ML model is developed, a sort of “white box”, trained to mimic
the input-output behaviour of the DNN. The white box model, which is intrinsically explainable,
aims to identify the decision rules or input characteristics that influence the network outputs

* Intrinsic Methods: they are DNNs created specifically to provide, together with the output, also
an explanation of the reason for that output. Intrinsically explainable DNNs simultaneously
optimise both model performance and a certain quality of the explanations produced

52

METODI DI VISUALIZZAZIONE

Opaque DNN
Hidden H

Visualization methods

Backpropagation-based

-
Calculate

"Saliency"

|Score S(E)

/ Visualize Interested Areas \

Input X
(Depict which part of input is
relevant w.r.t. given model prediction.)

- e e e e R e R R R R R R R R R R R R R e R R R R e R R R e e e e e e e e e

Hidden H
(Depict what kind of features are

kcaptured by these hidden states.) /

DNN Visualization w.r.t. Model Prediction y;

Features

visualise the relevance of features based on the
magnitude of the gradients flowing through the network
layers during training

Perturbation-based

visualise the relevance of the features by comparing the
network output for a certain input and for a suitably
modified copy of the input

53

VISUALIZATION METHODS

Activation Mazimization
Erhan et al. (2009)

Deconvolution
Zeiler et al. (2011);Zeiler and Fergus (2014)

CAM and Grad-CAM
Zhou et al. (2016); Selvaraju et al. (2017)

Back-Propagationj— 7P

DeepLIFT
Shrikumar et al. (2017)
| Integrated Gradients
M Sundararajan et al. (2016, 2017)

Occlusion Sensitivity
Zeiler and Fergus (2014); Zhou et al. (2014)

Representation Erasure
Li et al. (2016)

Meaningful Perturbation
Fong and Vedaldi (2017)

Prediction Difference Analysis.
Zintgraf et al. (2017); Robnik-Sikonja and Kononenko (2008)

Bach et al. (2015); Lapuschkin et al. (2016); Arras et al. (2016)

Arras et al. (2017); Ding et al. (2017); Montavon et al. (2017)

many available
methods ...

54

EXAMPLES OF BACKPROP-BASED METHODS

 ACTIVATION MAXIMIZATION Alexnet

used to display the important features in each layer by
optimizing the input x so that the activation a of the neuron
considered is maximized (with fixed network weights)

optimal x obtained using gradient ascent of a(x; w)

55

EXAMPLE: VISUALIZATION OF THE OUTPUT OF CNN FILTERS

0 20 40 60 8 100 120 140 0 20 4 60 8 100 120 140
0

O] 1] L] | 1 T ¥ . O

20 20

40 40

60 60

80 80

100 100 100

120 120 120

140 140

140

-l 1 |
0 20 40 o0 8 100 120 140

image outputs of the activations of two
of the filters of the first layer

useful for understanding how the subsequent layers of convolution transform the input

56

convolution2d S

WWiivuivimumigu o

0 200 A0¢ 00 500 1000
convolutionZzd /7

F. Chollet ...

EXAMPLE: VISUALIZATION OF THE OUTPUT OF CNN FILTERS

* another very simple way to quickly analyze the shape of the filters learned from the network
* the visual patterns to which each filter is expected to respond are displayed

* technique: ascent along the gradient in the input space — in practice starting from an initial empty
image each pixel is varied in order to maximise the response to a specific filter. The image
constructed this way will be the one for which the filter has the greatest response

* aloss is defined that maximize the value of given filtering a given convolutional layer

 SGD is used to adjust the pixel values in the input image maximizing the loss

58

for subsequent convolutional
layers the results tend to be less
useful ...

fs > f- fa
;‘ I I I
] Ws W7 Ws

bike

———

Layer 4

T

59

f8 — bike

W1 W> W3 W4 Ws Ws

I Vi
v
o
g
i /, "' a
¢ 4 13471 " (X l"/
1 'l,’l / ‘{'i'”“

for dense layers of extreme dimensionality (ex. alexnet 4096d)

TR . . . g ”"‘, ni'lf
it is advisable to apply methods of size reduction (PCA or tSNE 4096-> 2) i

tSNE

https.//cs.stanford.edu/people/karpathy/cnnembed/ 60

https://cs.stanford.edu/people/karpathy/cnnembed/

EXAMPLE: HEAT-MAPS (GRAD-CAM)

useful for understanding which parts of an image have been identified as belonging to a certain class
and for locating objects in images

it takes the feature map output of a convolutional layer produced by a given input images

each channel in the feature map is weighed through the gradient of the class with respect to the
channel (i.e. it is measured how much the input image activates the class)

predicted class: predicted
Indian elephant class: cat

61

EXAMPLE: PERTURBATION METHODS

 OCCLUSION SENSITIVITY:

e a gray patch that hides part of the pixels of the image is slides along the image, looking at how the prediction
of the model varies

* sensitivity maps (heat-maps): difference between the value of the output unit that responds maximally for a
given image and the value that the same unit has when a part is occluded

* |dea: performance varies significantly when influential elements of the input are masked

occlusion
mask
32Xx32

alexnet
stride 2

original
Image

62

