
Online/INFN Cloud - 07.06.2021

ANN: PRINCIPLES AND
COMMON ARCHITECTURES
S. Giagu - 1st ML_INFN Hackathon

ARTIFICIAL NEURAL NETWORKS
• the most popular approach to deep learning to date

• ANN is a mathematical model able to approximate with high precision a generic functional form:

• shallow analogy with biological neural networks, and in a more precise mathematical / computational language is a composition
of functions connected in chains described by graphs (eg Feed-Forward ANN can be represented as direct acyclic graph)

2

• architecture: interconnected group of simple identical computational units (neurons)

• processing: input information analysed according to a connectionist computational approach
→ collective actions performed in parallel by the neurons

• learning: behave as an adaptive system, the network structure dynamically change during the
learning phase based on a set of examples that flow through the network during the training
step

• non linear response obtained by non linear neuron outputs

• hierarchic representation learning obtained by implementing complex multilayered topologies

Properties:

f : Rn → Rm: y = f(x) ⟶ ANN F: ̂y = F(x)

• receives in input n signals xi and outputs y given as
composition of a synaptic function:

• and an activation function  
(for example a step function):

BASIC ARTIFICIAL NEURON MODEL: TRESHOLD LINEAR UNIT
• artificial neuron (McCulloch-Pitts (1943) and Rosenblatt (1962)):

3

Input

Weights

Synaptic
sum

Activation

Output

̂y = a(z) = a(w0 + xtw)

w =
w1
⋮

wm

x =
x1
⋮
xm

a(z) = {
1 if wtz ≥ − w0

0 if wtz < − w0

z = w0 +
n

∑
i=1

wixi = w0 + wtx

a single layer of TLU with step
activation can only learn to
solve problems with linearly

separable classes

7

Teoria e Tecniche di Pattern Recognition

Reti Neurali 12

F. Tortorella © 2005
Università degli Studi
di Cassino

Il Perceptron (Rosenblatt, 1962)

Teoria e Tecniche di Pattern Recognition

Reti Neurali 13

F. Tortorella © 2005
Università degli Studi
di Cassino

2 classi linearmente separabili

Con una TLU è possibile
risolvere i problemi in cui
le classi siano
linearmente separabili.

E se le classi sono
più di 2? x1

x2

extension to multilayers with non-linear activations allows to effectively learn complex hypersurfaces

a1(z1)

a1(z2)

a1(z3)

a1(zd1)
input

hidden layer

output

MULTILAYER PERCEPTRONS OR FEED-FORWARD NN
• one of the most used ANN architectures it the so called Feed-Forward NN

4

• neurons organised in layers: input, hidden-1, ... , hidden-K, output

• possible only connections of neurons of a given layer towards the next: acyclic direct graph

• all possible connections are present (dense layers)

≡

FF-ANN
acyclic direct

graph

zi = w(1)
0i +

m

∑
j=1

xjw(1)
ji

̂yi = a2 w(2)
0i +

d1

∑
j=1

a1(zj)w(2)
ji

• NN behaviour determined by:

• weights wij

• network topology (#layers, size of each layer, …)

• activation function of each layerMLP with 1 HL

5

non-linear activations allows to learn complex and non linear patterns …

a(z) = z a(z) = max[0,z]a(z) = tanh[z]

Linear Tanh ReLU

ANN ARE UNIVERSAL APPROXIMATORS

6

IMPORTANT: the theorem doesn’t say nothing about the effective possibility to learn in a
simple way the parameters of the model, all the DNN practice boils down in finding optimal
and efficient techniques to do that …

26

Teoria e Tecniche di Pattern Recognition

Reti Neurali 50

F. Tortorella © 2005
Università degli Studi
di Cassino

Regioni di decisione
delle reti neurali

Regioni di forma
arbitraria

Regioni convesse

Semispazi delimitati da
iperpiani

Forma generaleRegioni di decisioneStruttura

Teoria e Tecniche di Pattern Recognition

Reti Neurali 51

F. Tortorella © 2005
Università degli Studi
di Cassino

L1approccio RBF
� L;approccio RBF nasce nel contesto dei problemi di

interpolazione esatta.
� Supponiamo di avere N punti xk con corrispondenti target tk.

Vogliamo trovare una funzione h(.) tale che h(xk)= tk per
k=1,G,N

� L;approccio RBF è basato sull;individuazione di N funzioni
�(||x-xk||) tali che
h(xk)= �kwk�(||x-xk||)

� Queste funzioni sono di solito della forma

dove il � rappresenta la smoothness della funzione

�

	
��
�

�
�� 2

2

2�
xexp�(x)

Structure Decision regions Shapes
sub-spaced delimited

by hyperplanes

convex regions

arbitrary shaped

regions

∫Rn

| | f(x) − F(x) | |p dx < ϵ

F(x) = ∑ cia(w0i + wtx)

it can be demonstrated that a feed-forward
network with a single hidden layer containing a

finite number of neurons with non linear
activations can approximate continuous

functions on compact subsets of Rn, under
mild assumptions on the activation function

Universal approximation theorem proof:

- unbounded, sigmoid: here

- bounded, ReLU, arbitrary depth: here

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.441.7873&rep=rep1&type=pdf
https://arxiv.org/abs/1709.02540

LEARN A NON LINEAR
MAPPING OF THE INPUT

ANN AS NON LINEAR MAPPING ALGORITHM
• An ANN with non linear activations can be thought as an algorithm that learn two tasks at the same time:

7

LEARN A (LINEAR) MAPPING
BETWEEN LETENT

REPRESENTATION AND TARGET Φ:Rd→R∞
g(x) = wtΦ(x)+w0

a similar approach as in other
classical ML techniques: like SVM

16

Teoria e Tecniche di Pattern Recognition

Support Vector Machines 30

F. Tortorella © 2005
Università degli Studi
di Cassino

Casi non linearmente
separabili
� Nel caso in cui non ci sia soluzione (insiemi non

linearmente separabili), si introduce un mapping
�(x) ad uno spazio di dimensione molto più grande
in cui gli insiemi corrispondenti siano linearmente
separabili.

� Quindi, invece di aumentare la complessità del
classificatore (che resta un iperpiano) si aumenta la
dimensione dello spazio delle features.

� In dipendenza della dimensione dello spazio in cui è
formulato il problema originale, il mapping può
portare anche a dimensioni molto elevate (~106)
dello spazio trasformato.

Teoria e Tecniche di Pattern Recognition

Support Vector Machines 31

F. Tortorella © 2005
Università degli Studi
di Cassino

Casi non linearmente
separabili

Problema originale a
d dimensioni Problema a N>>d

dimensioni

Ricerca dell6OSH

mapping
tramite �(.)

mapping
tramite �(.)

SRM

original problem in d
dimensions problem with N≫d

dimensions

search of the optimal
separating hyperplane

mapping
via φ(.)

mapping
via φ(.)

SVM

evolution of this approach: Deep-NN

a DNN is a ANN with >1 hidden layer …

WHY GOING DEEP WORKS?
• the universal approximation theorem tells us that already a FFNN with one hidden layer can

approximate any function with arbitrary precision

• however deep architectures are much more efficient at representing a larger class of mapping
functions:

• problems that can be represented with a polynomial number of neurons in k layers require an
exponential number of neurons in a shallow network (Hastad et Al (86), Y.Bengio (2007))

• other advantages:

• sub-features (intermediate representations)  
can be used in parallel for multiple tasks  
performed with the same model

• overparametrization in very deep NN  
seems to have beneficial effects 
in smoothing the loss function landscape

8

VGG-56

VGG-110

#weights

WHY GOING DEEP IS DIFFICULT: VANISHING GRADIENT
• the main problem in the use of DNN architectures is related to the vanishing gradient

• the first layers of a deep NN fail to learn efficiently

• reason: during backprop in a network of n hidden layers, n derivatives of the activation
functions will be multiplied together. If the derivatives are small then the gradient will
decrease exponentially as we propagate through the model until it eventually vanishes

9

a

a’

• SOLUTIONS:

1. use activation functions which do not produce small derivatives: i.e. ReLU, LeakyReLU, Selu, …

2. use batch normalisation layers: in which the input is normalised  
before to be processed by the layer in order to constraint it to  
not reach regions of the activation function where derivatives  
are small (additional advantage: prevent the target of each layer  
from moving continuously during the training (internal covariate shift))

3. use residual networks: in which (residual) connections that do not pass through  
the activation functions and propagate information to subsequent layers

̂y =
nh

∑
j=1

tanh[zj] w(2)
j1 =

nh

∑
j=1

tanh[
nfeat

∑
i=1

xiw(1)
ij] w(2)

j1

LEARN THE PARAMETERS (I.E. TRAINING OF THE ANN)
• training consists in adjusting the weights according to a given cost function (loss) in order to optimise the
performance of the model wrt a specific task

• weights and biases: stochastic gradient descent with back-propagation

• hyperparameters (parameters whose values are fixed before the learning process begins) optimisation: heuristic approaches

(autoML: grid or random search, bayesian-opt, …)

10

Example: a MLP with:
- a single hidden layer with a: tanh
- an output layer with a: linear
- no bias weights

nvar: number of input featuresnh: number of neurons in the hidden layer

weight assigned to the connection
between the j-th neuron of the
hidden layer and the output neuron

weight assigned to the connection between the i-th neuron
of the input layer and the j-th neuron of the hidden layer

Start by observing that a NN model can be always expressed as a composition of functions associate at each layer

Example: for a deep-NN with d hidden layers: y = ANN(x) = f (output)(f (d)(⋯f (2)(f (1)(x))))

TRAINING AND GRADIENT COMPUTATION
• during the training N examples are presented to the network: T{x(i), y(i)} (i=1,…,N)

• weights are initialised to random values (small and around zero): for example ~N(0,σ)

• for each event the output of the model ŷ(x(i)) is calculated and compared with the expected target y(i) by

means of an appropriate loss function that measures the "distance" between ŷ(x(i)) and y(i):

11

example: MSE

to update the weights of all the layers of the network is necessary to
calculate the gradient of complicated non convex functions with respect
each weight, and to evaluate its numerical value. Doing it in a simple and

efficient way is called Backpropagation or Backprop procedure

L(w) =
1
N

N

∑
i=1

Li (y(i), ̂y(i)(x(i) |w)) Li (y(i), ̂y(i)(x(i) |w)) =
1
2 (y(i) − ̂y(i)(x(i) |w))2

w* = argmin
w

[L(w)]• the vector of weights is chosen as the one that minimizes L:

• the minimum is sought with GD / SGD techniques … w(t+1) = w(t) − η∇wL(T |w)

L

η
δ

loss landscape

BACKPROPAGATION
• the training of an NN takes place in two distinct phases which are repeated at each iteration:

• Forward phase: the weights are fixed and the input vector  
is propagated layer by layer up to the output neurons  
(function signal)

• Backward phase: the Δ error is calculated by comparing  
the output with the target y and the result is propagated back,  
again layer by layer (error signal)

• each neuron (hidden or output) receives and compares the function and error signals

• back-propagation consists of a simplification of the gradient calculation obtained by applying recursively the rule
of derivation of compound functions (chain rule)

12

w1

∂L(w)
∂w1

=
∂L(w)

∂ ̂y
×

∂ ̂y
∂w1

=
∂L(w)

∂ ̂y
×

∂ ̂y
∂z1

×
∂z1

∂w1

̂y = a2(w2z + b2)z1 = a1(w1x + b1)

L(w) =
1
2

(̂y − y0)2

available at the output
analytically calculable

LEARNING CURVES
• at the start of the training phase when the network weights have been initialised randomly (with small random

values) the error on the training set (the loss value) is typically large

• with the iterations (epochs) the error tend to decrease until it reach (typically) a plateau value that depends on:
the size of the training set, the NN architecture, initial value of the weights, the hyper-parameters …

• training progress is visualized with the learnign curves (loss or accuracy or any useful metrics vs epochs)

13

22

Teoria e Tecniche di Pattern Recognition

Reti Neurali 42

F. Tortorella © 2005
Università degli Studi
di Cassino

Terminazione
dell-apprendimento

E/n

test validation

terminazione
dell-apprendimento

Teoria e Tecniche di Pattern Recognition

Reti Neurali 43

F. Tortorella © 2005
Università degli Studi
di Cassino

Migliorare il training
� Problema dei minimi locali

Lo
ss

• as usual in ML multiple datasets (and/or cross validation) are needed:

• for the training phase

• for the optimisation of hyper-parameters and the training stop criteria

• to evaluate the performances of the trained model

NOTE: WEIGTH INITIALISATION

14

• general criterion: the initial weights must break the symmetry of the system

• if two hidden neurons with the same activation function are connected to the same input then they must

have different initial weights, otherwise they will be identically updated by a deterministic algorithm

• standard rule:

• biases fixed to a fixed value (ex. zero)

• weights randomly initialised around zero (example N(0,σ) or U[-ε,ε])

• large values for σ bring strong symmetry breaking and helps minimise redundancies in the network architecture, but may

generate numerical instabilities in deep networks

Most popular heuristics:
U [−

1

m
,

1

m] U −
6

n + m
,

6
n + m

Glorotuniform (for dense layers)

m: # inputs of the layer

n: # outputs of the layer

N [0, σ =
1

m]
normal

• minimisation of the loss function is performed by gradient descent (GD)  
techniques

• for large datasets GD becomes computationally inefficient and it is  
replaced by a stochastic implementation:

• weights are updated after having presented to the model sub-sets (batches)  
of the entire dataset T:

• T is divided in m sub-samples (batches) T1…Tm

• weights are updated using each subset Ti:

STOCHASTIC GRADIENT DESCENT WITH MOMENTUM

15

∇Li(w(k)) =

=
1
Ni

∇ ∑
k∈Ti

L(xk, yk, w)

L(w)

Lmin(w)

v(k+1) = αv(k) + (1 − α)∇Li(w(k))

w(k+1) = w(k) − ηv(k+1)

gradient

direction

previous step
direction

MOMENTUM:

• for α = 0 we have classic GD/SGD

• for α = 1 the gradient descent is ignored and the weight update follows the previous direction (momentum)

• typically: α ~0.9-0.99

the additional
fluctuations also

help to avoid local
spurious minima

VARIABLE LEARNING RATE

16

• η affects the speed of convergence:
• a small value can result in excessive slowness and an increase in the

probability of being trapped in local minima
• a large value can cause the algorithm to diverge

• solution: Variable Learning Rate and Adaptive Learning Rate Optmizers

• during the iterations the learning rate decrease according to a predetermined

schedule or adapt following a specific strategy 10

Teoria e Tecniche di Pattern Recognition

Funzioni Discriminanti Lineari 18

F. Tortorella © 2005
Università degli Studi
di Cassino

Metodo della discesa lungo il
gradiente
Supponiamo che alla
generica iterazione k
abbiamo un vettore dei pesi
w(k). Il gradiente di J per quel
vettore sia �J(w(k)). Il valore
aggiornato di w sarà:

dove � è una costante
definita tasso di
apprendimento (learning rate)
e definisce lCampiezza della
modifica del vettore.

J

J
� �)()()1(kJkk www ����� �

Teoria e Tecniche di Pattern Recognition

Funzioni Discriminanti Lineari 19

F. Tortorella © 2005
Università degli Studi
di Cassino

Come scegliere il
learning rate ?
� Il valore di � influisce sulla rapidità di convergenza

dellCalgoritmo, per cui un valore basso può risultare in
una lentezza eccessiva

small η

slow convergence

11

Teoria e Tecniche di Pattern Recognition

Funzioni Discriminanti Lineari 20

F. Tortorella © 2005
Università degli Studi
di Cassino

Come scegliere il
learning rate ?
� Di contro, un valore troppo alto può far divergere

l5algoritmo

Teoria e Tecniche di Pattern Recognition

Funzioni Discriminanti Lineari 21

F. Tortorella © 2005
Università degli Studi
di Cassino

Algoritmi di apprendimento

� Sulla base del criterio J(w) scelto e della
regola di minimizzazione si possono quindi
definire diversi algoritmi di apprendimento
che mirano a costruire la fdl.

� Analizziamo tre algoritmi:
� L5algoritmo del Perceptron

� L5algoritmo MSE

� L5algoritmo di Widrow-Hoff o algoritmo LMS

ADAptive grad: the learning rate associated with each weight is individually scaled inversely
proportional to the root of the historical sum of squares of the gradients for that parameter:

‣ weight associated to features that appears with high frequency: riduce η

‣ weight associated to features that appears with low frequency: increase η

several implementations:

Adadelta, RMSProp, Adam, …

large η

cause drastic

updates leading to
instability

CHOICE OF ACTIVATION FUNCTIONS FOR THE HIDDEN LAYERS

17

In general, any function that met the universal approximation theorem conditions is fine. In practice some of them
work better for specific NN architectures …

should not be used in dense and convolutional layers:

- gradient vanishes away from x=0 → vanishing gradient problem

- sigmoid has output not centered in zero → affects SGD dynamic (zig-zag instabilities)

- used in RNN to control gated I/O and often in dense layers in GAN to avoid sparsity

the most popular:

- allows non linear dynamics

- faster convergence of the NN because doesn’t saturate

- no vanishing gradient problem

- induce gradient sparsity (0 output for negative values, i.e. fewer active neurons). This

can be an advantage or an issue depending on the specific ANN architecture. Needs to
be monitored and in case of problems replaced with alternatives

POPULAR ACTIVATION FUNCTIONS FOR THE OUTPUT LAYER

18

Sigmoid: used in binary classification problems (2 classes) with single
output neuron or multilabel (multiple mutually inclusive classes) or when
the output features are numbers in (0,1)

Softmax: Rn→ [0,1]n

- soft version of the argmax output

-often used in multi-class classification tasks with one-hot encoded labels

-output of each neuron ∈ (0,1) and interpretable as a probability (∑yi=1)

yi =
ezj

∑n
j=1 ezj

Identity (linear): standard choice for regression tasks

LOSS FUNCTIONS

19

binary cross-entropy

MSE

p = predicted probability (0,1)

y = label (0 or 1)

NOTE: generalisation for multi class problems

- categorical cross-entropy (one-hot encoded label)

- sparse categorical cross-entropy (integer labels)

given two distributions p and q, Hp(q) measures the average number of bits needed to identify an event extracted
from the set, when the p model is used for the probability distribution, rather than the "true" distribution q. It is
usually the best loss function to train ANNs that output probabilities (example: softmax)

for regression problems

Modern ANNs are trained using the maximum likelihood principle, consequently the most used loss functions are
simply equivalent expressions/approximations of the negative log-likelihood:

L(w) = − ET[log pmodel(y |x, w)]

most popular forms:

MSE = | |y − ̂y | |2 =
1
N

N

∑
i=1

(y − ̂y)2
(also MAE, UberLoss, …)

Hp(q) = −
1
N

N

∑
i=1

yi log(pi) + (1 − yi)log(1 − pi)

MOST CRITICAL ASPECTS IN THE TRAINING OF ANNs
• training speed:

• mitigated by using stochastic-learning, momentum, adaptive learning rate (Adam o RMSProp), non
saturating activation functions (ReLU, …), smart weight initialisation, and scaling of the input features

• but most of all by using dedicated coprocessors (GPUs, TPUs, ACAPs, SOCs, FPGAs, …)

• hardcore overfitting:

• the main problem for overparametrized models as deep neural networks with O(M) of weights

• inevitable consequence of the trade-off between variance (large expressive power) and bias (generalization)

• issue controlled by applying a set of regularization techniques aimed at reducing the error on the test set
(typically at the expense of error on the training set)

• regularisation techniques impose constraints on different aspects of the NN model such as the complexity of
the NN architecture, the error reduction on the training set, the representation of the loss function landscape,
the size of weights, etc… so that will be more difficult for the model to learn characteristic that are specific
of the training set

20

DROPOUT

21

before after

used routinely in the context of ConvNETs in which it can sensibly
increase performance on the test set

• very popular and powerful technique to prevent overfitting in architecture of deep neural network

• imposes constraints on the complexity of the Neural Network architecture

• neuron connections are eliminated based on a defined probability

• forces the model to not rely excessively on particular sets of features

EARLY STOPPING E NOISE INJECTION
• early stopping: imposes constraints on the error reduction on the training set

• the training process is stopped as soon as the loss on the validation sample reaches a plateau or start to increase

22

• noise injection/information loss: makes it more difficult for the
network to learn specific characteristics of the input features

• random flip of labels

• random occlusion of pixels or feature bits

• adding withe/colored/gaussian noise to the features

• … 7

Teoria e Tecniche di Pattern Recognition

Support Vector Machines 12

F. Tortorella © 2005
Università degli Studi
di Cassino

Minimizzazione del Rischio
Strutturale
� Ai fini della minimizzazione, si introduce una struttura che

ripartisce l6intera classe di funzioni in sottoinsiemi F1�F2 �:Fn
�: ognuno dei quali contiene le funzioni di dimensione VC h1�
h2 �: � hn �:. Di ogni insieme si calcola il termine di
confidenza.

� La minimizzazione del rischio strutturale consiste quindi nella
ricerca del sottoinsieme di funzioni Fmin che minimizza il termine
di maggiorazione del rischio atteso.

� A questo scopo si addestra una serie di classificatori, uno per
ogni sottoinsieme, con l6obiettivo di minimizzare il rischio
empirico.

� Il sottoinsieme Fmin è quello per cui risulta minima la somma di
rischio empirico e di termine di confidenza.

Teoria e Tecniche di Pattern Recognition

Support Vector Machines 13

F. Tortorella © 2005
Università degli Studi
di Cassino

Minimizzazione del Rischio
Strutturale

R(f)

Rs(f)

DATA AUGMENTATION
• the best way to make an ML algorithm to generalize better is to train it on larger and more expressive data

• but having more data is normally the real issue in ML/DL → solution: artificially increase the dimension of
the training set

23

+ modern approaches are based on generative DL (GAN, VAE, …)
IMPORTANT: the applied transformation should not bias the relevant “physics” of your data

ARCHITECTURES FOR VISION: CONVNET/CNN
• CNN are specific DNN designed to excel in image recognition tasks

• operate directly on the images (raw “pixel” information organised in a fixed mesh)

• the expressive power of the model is constrained based on assumptions on the properties of the input:

• symmetrical spatial structure of the input: pixels organised in a fixed size mesh

• translation invariance (equivariance): sub-features in the image remain the same in different points of the image

• self-similarity: two or more identical sub-features present in the image can be recognized with a single filter that identifies
one of the sub-features

• compositionality: a complex feature made of several sub-features can be recognized by identifying only few sub-features

• locality of the features: to identify a sub-feature it often takes just a few pixels concentrated in a small portion of the image
itself

• implementation: apply layers called convolutional filters that operate on the input by recognizing the local sub-features present there

• the same filters use shared parameters (weights) and sequentially analyse all portions of the image

• weights of the filters are not fixed but are learned

• CNN learns from the training data sample the best set of weights to solve the task given the chosen architecture
24

HOW A NN “SEE” AN IMAGE …

25

images for a computer are essentially meshes (tensors) of numbers

gray scale image with 8bit depth: 12x16x1 intensity ∈ [0,256]

color image with n-bit depth: m1xm2x3 with each RGB intensity ∈ [0,2n]

credit MIT AI course

CONVOLUTIONAL FEATURE EXTRACTION LAYER
• used to identify similar features that are present in different position of the image

• based on three basic ideas:

• local receptive field

• shared-weights (kernels)

• pooling layers

26

local receptive field
5x5

• input neurons (one for each NxN pixels of the image) are NOT fully connected with all
the neurons of the first hidden layer. Connections exist only for localised and small
regions of the image called local receptive fields

• the local receptive field is shifted through the whole image: for each shifted receptive
field there will be an hidden neuron in the hidden layer

24 = 28-5+1

stride S=1

27

• shared-weights:

• all the hidden neurons of a given hidden layer share the same weights → all neurons

of the hidden layer detect the same sub-feature, only in different regions of the
image

• as the CNN has to identify many sub-features: there are many convolutional kernels
each one with an associated hidden layer: input image (n,m,3) → output (k,l,d)

• huge advantage wrt DNN: much smaller number of weights to learn …

local receptive field or

convolutional kernel

convolution

operation

wi

xi
∑xi*wi

NON LINEARITY

28

after ReLU

after the convolution operation, an activation function is applied to each (neuron) of the filtered image (ex.
ReLU: all negative values are set to zero)

- emphasize only some of the dominant characteristics of the sub-features selected by the filter

before ReLU

• pooling layers:

• in addition of the convolution layers a CNN has also other layers called pooling layers, usually used
after each convolution layer. They performs a downsampling operation: simplifying the information in
output from the convolutional layer (less weights) and making the NN less sensitive to small
translations of the image

• motivated on the fact that once a sub-feature is found, to know the exact position is not as important
as to know the relative position wrt the other sub-feature in the image

29

FULL CNN: CONV BLOCKS + DENSE MLP STAGE
• generally after the convolutions the output of the convolutional layers is connected via a flattening layer

with one or more dense layers (DNN), that are used to optime objectives: class scores (classification),
mapping (regression), etc…

30

Example: LeNet (Yan LeCun)
multi-staged CNN for classification: (Conv2D+MaxPooling)x2 + 2xDense + output layer (soft max)

detects details
(segments, arcs, …)

focus on overall
shapes

maps high level
representations to targets

MODERN CNNs

31

philosophy: deeper is better …

• AlexNet: better backdrop via ReLU, dropout, batch normalisation, data augmentation

• VGG: smaller 2D kernels(3x3) with more convolutional blocks to induce more non-

linearity and so more degree of freedom for the network

• GoogleNet (Inception):

Inception module:

- 2D convolutions with different kernel sizes process the same input and then are concatenated

- multi-level feature extraction at each step: general features captured by 5x5 at the same time

with local ones captured by 3x3

- additional intermediate classification tasks to inject gradient in intermediate layers …

RESNET, DENSENET, XCEPTION

32

going deeper increase the vanishing gradient problem residual learning in
ResNet help avoiding it, moreover each block learns the residual wrt the
identity (easier task)

evolutions of the idea:

DenseNet: connect entire blocks of layers to one another helps in
identifying and use of diverse representations as we go deeper …

DenseNet

ResNet-152
60 MPar

… 152 layers

Xception = Inception + ResNet: same parameters as
InceptionV3 but better performance …

leverage Depthwise Separable Convolutions
Conv2D (3x3) → DSConv2D: 3x1 + 1x3

ANN ARCHITECTURES FOR UNSUPERVISED REPRESENTATION LEARNING: AUTOENCODERS

• non-supervised algorithm that try to identify common and fundamental characteristic in the input data

• combines and encoder that converts input data in a different representation, with a decoder that

converts the new representation back to the original input

• trained to output something as close as possible to the input (i.e to learn the identity function)

33

• “trivial” unless to constrain the network to have the hidden
representation with a smallare dimension of the input/output

• in such case the network build (learn) “compressed”
representations of the input features: x∈R5→z∈R3

input 
v(5)

output = input
bottleneck

ENCODER DECODER

AUTO-ENCODER  
IMPLEMENTATION

34NOTE: L do not depends on dataset labels (unsupervised learning)

x z x̂

L(x, ̂x) = | |x − ̂x | |2

gϕ(x) : Rd → Rz

fθ(z) : Rz → Rd

ϕ*, θ* = arg max
ϕ,θ

1
N ∑ L(x(i), ̂x(i)) =

= arg max
ϕ,θ

1
N ∑ L(x(i), fθ(gϕ(x))

L(x, ̂x) = − ∑
D

[xk log(̂xk) + (1 − xk)log(1 − ̂xk)]or

ENCODER: x→z

DECODER: z→x

trained so that: Output ≃ Input

AE: RECONSTRUCTION QUALITY

35

Original images

(ground truth) 2D latent space 5D latent space

- latent space acts as a "compressor" of information, a certain level of smoothing (inform. loss) is inevitable

- most important limitation: the learned latent space is a non-continuous representation and does not allow

interpolations and / or to structure the space appropriately, i.e. cannot be used to generate events (for this scope
there are specific generative architectures VAE, GAN, Normalizing Flows, Invertible-nets, etc…)

ANN ARCHITECTURES FOR SEQUENCES: RECURRENT NEURAL NETWORKS

• RNN are specific ANN architectures optimised to identify long-term correlations in sequence of informations
of variable lengths (example: natural language processing, signal processing, time series forecasting, etc…)

• typical task for a RNN: given a sequence of features (text, music, … a list of charged tracks parameters),
predict one or more targets (the next word on a phrase, the weather in the next 24h, the flavour of a hadron
jet in an hep experiment, …)

• a RNN should be able to:

• take in input sequences of variable length

• be able to keep track of dependences between elements that 
are distant in the sequence

• be able to keep information on the order between the  
elements of the sequence

• have shared parameters (weights) so that identified correlations 
between elements can be transferred in diverse points of the  
sequence

36

 ANN

37

L
→ FORWARD PASS

ŷ

ht

̂yt = Wt
hyht

=

ht = fw(ht−1, xt) =

= tanh(Wt
hhht−1 + Wt

xhxt)

old-state

sequence input at step t

• a RNN processes the input in a loop (recurrent connection) that allows the persistence of the informations during
the entire processing of the sequence’s elements

• base module: A is a NN that analyse the t element of the input sequence xt and produce the output ht (hidden
state). ht is passed to the same network during the processing of the next element of the sequence

the same function fw with the same set
of weights is used to process each

element t of the sequence …

can be thought of as a
series of multiple copies
of the same conventional

neural network, each
passing a message to its

successor

RNN IMPLEMENTATION

 ANN

RNN AND LONG TERM DEPENDENCIES

38

- in RNNs unbounded activations (like ReLU) cannot be
used as they create instabilities

- tanh or sigmoid are OK suffer vanishing of the gradient

problem solved in LSTM RNN (Hochreiter, '97) with a "software trick": instead of having a single neural layer, it
has four, which interact in such a way to implement a sort of parallel data-flow which at each step t makes the
previous data available to each layer of the network w/o being affected by gradient dilution

key element: cell-state Ct

is a memory units (“conveyor belt”) to which is
possibile to add or subtract information using
“gate” structuresht

CtCt−1

ht−1

LONG SHORT TERM MEMORY NETWORKS

39

output ∈[0,1]:

every LSTM has 3 gates:

- f: forget gate (controls deleting from the cell-state)

- i: input gate (controls writing on the cell-state)

- o: output gate (controls the output on ht)

gate: NN-layer with sigmoid activation and a point-wise multiplication

the backprop from Ct →Ct-1 doesn’t requires multiplications for tanh/sigmoid → no gradient dilution …

every publication implementing a LSTM has used a slightly different version of the original algorithm, so
you’ll find it with different names …

GRU (Gate Recurrent Unit):
combines the gates and unify
hidden state with cell-state to
simplify model and number of
parameters (one of the most

used RNNs)

LSTM with “peephole”:
gate layers can see the

cell-state

ht

Ct
Ct−1

ht−1

KEEP IN TOUCH …

40

https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
https://orcid.org/0000-0001-9192-3537

ADDITIONAL MATERIAL

FIRST HIGH PERFORMANCE CNN: ALEXNET
• based on Krizhevsky et Al. architecture winer of the Imagnet 2012 contest

• dev. framework: Caffe (Berkeley Vision Deep Learning framework: http://caffe.berkeleyvision.org)

42

same top-down approach as LeNet with successive filters designed to capture more and more subtle features

+ improvements:

1. better back-propagation via ReLU

2. dropout based regularisation

3. batch normalisation

4. data augmentation: images presented 

 to the NN during training with random  
translation, rotation, crop

5. deeper architecture: more convolutional  
layers (7), i.e. more finer features  
captured

AlexNET

http://caffe.berkeleyvision.org

43

• feature initialised with white gaussian  
noise

• fully supervised training

• training on GPU NVIDIA for ~1 week

• 650K neurons

• 60M parameters

• 630M connections

44

example: standard convolution2D with kernel (2,2)

stride 1, no padding:

input 6x6 → output 5x5

stride 2, no padding:

input 6x6 → output 3x3

stride 2, padding 1:

input 6x6 → output 4x4

N

N

W

W

OUTPUT AFTER THE APPLICATION OF THE CONVOLUTIONAL FILTER …

45

Size of the output after applying the filter:

Padding P Stride S

46

CIFAR-10 dataset
VGG-56

VGG-110

ResNET-56

DenseNET-121

#weights

presence of

skip connections

L1/L2/L3 REGULARIZATION
• idea: constrain the complexity of the model by penalizing large values of the weights, unless it is strongly

requested by the data itself

• method: a penalty is added to the loss function: L(w) → L(w) + Ω(w)

47

w1

w2

w* w* w*

||w||1≤1 ||w||2≤1 (1-α)||w||1+α||w||2≤1

L1 L2 weight decay L1+L2

Ω(w) =
α
2

w 2
2 =

=
α
2

wtw = ∑ w2
k

Ω(w) = λ[(1 − α) w 1 + α w 2
2]Ω(w) = α w 1 =

= ∑ |wk |

EXAMPLE: GD WITH L2 REGULARIZATION

48

regularised loss:

the effect of L2 on the single iteration is to reduce

the vector of weights for a certain factor

LR(w) = L(w) +
α
2

wtw

gradient: ∇wLR(w) = ∇wL(w) + αw

weights update: w ← w − η[∇wL(w) + αw] = (1 − ηα)w − η∇wL(w)

done on all the iterations of the training it can be shown that the overall
effect is to rescaling the components of the solution vector w* of the non
regularised problem proportionally to λi/(λi+α), with λi the eigenvalues of
the Hessian matrix of L

- components in the directions of insensitive w (λi≪α) →large reducing effect

- components in the sensitive directions (λi≫α) → unchanged

isocurve of L

isocurve
of Ω

point of

equilibrium

it can be demonstrated that for a loss L with quadratic minimum and

diagonal Hessian H = diag[λ1 … λn]:

with w* solution vector of the non regularised problem

- wi* ≤ α/λi ⇒ ŵi = 0

- wi* > α/λi ⇒ ŵi scaled by α/λ

EXAMPLE: GD WITH L1 REGULARIZATION

49

very different effect wrt the
L2 case. Due to the

singularity the solution if
not easy to find analytically

LR(w) = L(w) + α∑
i

|wi |

gradient: ∇wLR(w) = ∇wL(w) + αsign[w]

isocurves of L

isocurves
of Ω

ŵi = sign[w*i] max[|w*i | −
α
λi

,0]

L1 acts as a feature selector / sparsifier

w*

ŵ

point of

equilibrium

regularised loss:

• the choice of the decision boundary is a compromise between:

- performance of the classifier on the training set ← minimise variance of the training set

- generalisation capacity of the classifier ← minimise the bias on the test set

GENERALISATION AND BIAS-VARIANCE TRADEOFF

50

4

Teoria e Tecniche di Pattern Recognition

Support Vector Machines 6

F. Tortorella © 2005
Università degli Studi
di Cassino

Quanti errori !!!

Teoria e Tecniche di Pattern Recognition

Support Vector Machines 7

F. Tortorella © 2005
Università degli Studi
di Cassino

Una limitazione del costo
atteso
E# stata dimostrato (Vapnik) che sussiste la seguente
disuguaglianza :

con probabilità 1-�.
h è la dimensione di Vapnik-Chervonenkis (VC
dimension) della funzione f e stima la capacità della
funzione f, ovvero l#abilità ad apprendere senza errore
un qualunque training set S.

S
/4)log(1)/h)Sh(log(2

(f)RR(f) S

���
��

N
N

Prob () = 1-η

• in statistical theory of ML it can be demonstrated the Vapnik inequality:

error on training set

error on an independent dataset (what we
ideally would like to minimize)

N: dimension of the
training set

confidence term (i.e. the
generalisation error)

• h: Vapnik-Chervonenkis dimension (VC-dimension)

• is a positive integer that measure the expressive power of the ML model, larger h larger is the

capacity of the model to represent complex boundaries

7

Teoria e Tecniche di Pattern Recognition

Support Vector Machines 12

F. Tortorella © 2005
Università degli Studi
di Cassino

Minimizzazione del Rischio
Strutturale
� Ai fini della minimizzazione, si introduce una struttura che

ripartisce l6intera classe di funzioni in sottoinsiemi F1�F2 �:Fn
�: ognuno dei quali contiene le funzioni di dimensione VC h1�
h2 �: � hn �:. Di ogni insieme si calcola il termine di
confidenza.

� La minimizzazione del rischio strutturale consiste quindi nella
ricerca del sottoinsieme di funzioni Fmin che minimizza il termine
di maggiorazione del rischio atteso.

� A questo scopo si addestra una serie di classificatori, uno per
ogni sottoinsieme, con l6obiettivo di minimizzare il rischio
empirico.

� Il sottoinsieme Fmin è quello per cui risulta minima la somma di
rischio empirico e di termine di confidenza.

Teoria e Tecniche di Pattern Recognition

Support Vector Machines 13

F. Tortorella © 2005
Università degli Studi
di Cassino

Minimizzazione del Rischio
Strutturale

R(f)

Rs(f)

VC dimension: h

UNDERFITTING

OVERFITTING

OPTIMAL CAPACITY

VAPNIK THEORY: MINIMISATION OF STRUCTURAL RISK

51
ANN, …
SVM, …

bias-variance tradeoff: by using a more complex model (i.e. larger h) able to reduce the variance,
we pay this with a larger bias …

possible
strategies

h⋯
N

lower limit on the test set
errorEr

ro
re

training set error

generalisation

error

- fix the training set error (for example making it zero), and minimise the confidence term

- choose an appropriate model architectures (i.e. the capacity) and minimise the training

set error

METHODS TO EXPLAIN DNNs
• Due to its apparent black-box nature, it is inherently difficult to understand which aspects of the

input data guide the decisions made by a DNN

• There is a research sector expanding these days (xAI / xML where x stands for explainable) whose
purpose is to develop useful methodologies to explain the decision-making process of DNNs

• methods for explaining DNNs can be divided into three main groups:

• Visualization methods: they help to understand the correlations between output and input by
highlighting, through appropriate methods, the characteristics of the input (of the DNN or of
intermediate stages) that strongly influence the output of the network

• Synthesis methods: a separate ML model is developed, a sort of “white box”, trained to mimic
the input-output behaviour of the DNN. The white box model, which is intrinsically explainable,
aims to identify the decision rules or input characteristics that influence the network outputs

• Intrinsic Methods: they are DNNs created specifically to provide, together with the output, also
an explanation of the reason for that output. Intrinsically explainable DNNs simultaneously
optimise both model performance and a certain quality of the explanations produced

52

METODI DI VISUALIZZAZIONE

53

Visualization methods Features

Backpropagation-based
visualise the relevance of features based on the

magnitude of the gradients flowing through the network
layers during training

Perturbation-based
visualise the relevance of the features by comparing the

network output for a certain input and for a suitably
modified copy of the input

VISUALIZATION METHODS

54

many available
methods …

EXAMPLES OF BACKPROP-BASED METHODS

• ACTIVATION MAXIMIZATION

• used to display the important features in each layer by
optimizing the input x so that the activation a of the neuron
considered is maximized (with fixed network weights)

• optimal x obtained using gradient ascent of a(x; w)

55

Alexnet

EXAMPLE: VISUALIZATION OF THE OUTPUT OF CNN FILTERS

56

image outputs of the activations of two
of the filters of the first layer

useful for understanding how the subsequent layers of convolution transform the input

57F. Chollet …

EXAMPLE: VISUALIZATION OF THE OUTPUT OF CNN FILTERS

58
some of the filters of the first layer of VGG16

• another very simple way to quickly analyze the shape of the filters learned from the network

• the visual patterns to which each filter is expected to respond are displayed

• technique: ascent along the gradient in the input space → in practice starting from an initial empty
image each pixel is varied in order to maximise the response to a specific filter. The image
constructed this way will be the one for which the filter has the greatest response

• a loss is defined that maximize the value of given filtering a given convolutional layer

• SGD is used to adjust the pixel values in the input image maximizing the loss

59

for subsequent convolutional
layers the results tend to be less
useful ...

60

for dense layers of extreme dimensionality (ex. alexnet 4096d)

it is advisable to apply methods of size reduction (PCA or tSNE 4096-> 2)

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH����� 0D\����������

/DVW�/D\HU��'LPHQVLRQDOLW\�5HGXFWLRQ

9DQ�GHU�0DDWHQ�DQG�+LQWRQ��³9LVXDOL]LQJ�'DWD�XVLQJ�W�61(´��-0/5�����
)LJXUH�FRS\ULJKW�/DXUHQV�YDQ�GHU�0DDWHQ�DQG�*HRII�+LQWRQ��������5HSURGXFHG�ZLWK�SHUPLVVLRQ�

9LVXDOL]H�WKH�³VSDFH´�RI�)&��
IHDWXUH�YHFWRUV�E\�UHGXFLQJ�
GLPHQVLRQDOLW\�RI�YHFWRUV�IURP�
�����WR���GLPHQVLRQV

6LPSOH�DOJRULWKP��3ULQFLSDO�
&RPSRQHQW�$QDO\VLV��3&$�

0RUH�FRPSOH[��W�61(

PCA

tSNE https://cs.stanford.edu/people/karpathy/cnnembed/

https://cs.stanford.edu/people/karpathy/cnnembed/

EXAMPLE: HEAT-MAPS (GRAD-CAM)

61

• useful for understanding which parts of an image have been identified as belonging to a certain class
and for locating objects in images

• it takes the feature map output of a convolutional layer produced by a given input images

• each channel in the feature map is weighed through the gradient of the class with respect to the
channel (i.e. it is measured how much the input image activates the class)

predicted class:
Indian elephant

predicted
class: cat

EXAMPLE: PERTURBATION METHODS

62

• OCCLUSION SENSITIVITY:

• a gray patch that hides part of the pixels of the image is slides along the image, looking at how the prediction

of the model varies

• sensitivity maps (heat-maps): difference between the value of the output unit that responds maximally for a
given image and the value that the same unit has when a part is occluded

• idea: performance varies significantly when influential elements of the input are masked

original
image

occlusion
mask
32x32

alexnet
stride 2

