What is ML? l
(and why it is relevant for INFN) M INFN

Daniele Bonacorsi First ML_INFN hackaton, 7-9 June 2021




M | (INFN

ML In context

D. Bonacorsi



Textual definition(s) of ML

“The capacity of a computer to learn from experience, i.e. to modify its processing
on the basis of newly acquired information”

— The Oxford dictionary of statistics terms (today)

“ML is the field of study that gives computers the ability to learn without being
explicitly programmed”

— Arthur Samuel (1959), author of the Samuel Checkers-playing Program (and some TeX..)

“A machine is said to learn from experience E with respect to some class of tasks T
and performance measure P if its performance at tasks in T, as measured by D,
improves with experience E.”

— Tom Mitchell (1997)
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Visual definition of ML

A pictorial definition (by Nvidia)
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“Al”, really?

“Al" terminology perhaps misleading in most practical discussions

Most of Al research today is actually not trying to recreate
intelligence in any shape or form

Automation of task

telligence * execution and (eventually)
decision making

Artificia

Aim at collecting data around how humans make decisions, to

perform the same tasks at a scale (LARGE) and latency (SMALL) that
are not humanly possible

. Example: computer vision applications

This is the “artificial intelligence” we are talking about. And a way to
implement it is via Machine Learning techniques.
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Another (last) definition

“Classical programming uses rules and data to produce answers.
Machine Learning uses data and answers to produce rules.”

— F. Chollet (author of Keras)

Data >  CLASSICAL

Rules » PROGRAMMING > Answors
Data *  MACHINE Rl
Anewers ., LEARNING l
New

answers
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Traditional approach

Study the Write rules
problem

Analyze
errors



ML approach: data-driven modelling

|
Train ML
algorithm
Analyze
errors

Evaluate
solution

Study the
problem




ML approach: Big Data-driven modelling

”Big Data” definition
includes Volume, but also
Variety, Velocity, Veracity, etc

Study the
problem

*Lots* of data

|
Train ML
algorithm
Analyze
errors

Evaluate
solution
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The zoo of ML algorithms

Impossible to go into the details of each.. focus on key concepts

~ Naive Bayes
[ Averaged One-Dependence Estimators (AODE)
' Bayesian Belief Network (BBN)
Deep Boltzmann Machine (DBM) Bayesian |-
- ) Gaussian Nawe Bayes
Deep Belief Networks (DBN) | / )
-, Deep Learning Multinomial Naive Bayes
Convolutional Neural Network (CNN)  »————— f \ i
o \ / Bayesian Network (BN)
Stacked Auto-Encoders /
Classification and Regression Tree (CART)
Random Forest \ )
\ ( [ Merative Dichotomiser 3 (ID3)
Gradient Boosting Machines (GBM) | \ / | cas
Boosting | \ / v cs.o
Bootstrapped regation (Bagging) \ Ensemble \ Decision Tree -
ped Aggrega ‘AdaBoost \ ) Chi-squared Automatic Interaction Detection (CHAID)

) Decislon Stump
Stacked Generalization (Blending) | \ \ / / . .
w \ ) | / ' Conditional Decision Trees
Gradlent Boosted Regression Trees (GBRT) \ / / \

M5
Radial Basis Function Network (RBFN)
! Principal Component Analysis (PCA)
Perceptron | \ f f / - -
~_ Neural Networks \ / f | Partial Least Squares Regression (PLSR
Back-Propagation % ] L/ i

| Sammon Mapping
Multidimensional Scaling (MDS)
Ridge Regression

/] \ \ Projection Pursuit
Least Absolute Shrinkage and Selection Operator (LASSO) / \ \
. Regularization [ | \ \ Principal Component Regression (PCR)
> \ \

Hopfield Network | ""V‘_Ma(hine Learning Mgorithmf )

— —

Elastic Net Dimensionality Reduction : B .
Partial Least Squares Discriminant Analysis
Least Angle Regression (LARS)
Cubist Mixture Discriminant Analysis (MDA)
ubIs

) \ Quadratic Discriminant Analysis (QDA)
One Rule (OneR) | / / \ ) - —
. Rule System / | ) ' Regularized Discriminant Analysis (RDA)
Zero Rule (ZeroR) 7~ \ |
) ) f / \ ) . Flexible Discriminant Analysis (FDA)
Repeated Incremental Pruning to Produce Error Reduction (RIPPER) / \ o\ |\~ R i
/ \ ) Linear Discriminant Analysis (LDA)

Linear Regression
) ) . k-Nearest Neighbour (kNN)
Ordinary Least Squares Regression (OLSR) / \ ’
| \ Learning Vector Quantization (LVQ)

Stepwise Regression , \ Instance Based | _,
~\ Regression | ‘ 4. Self-Organizing Map (SOM)
Multivariate Adaptive Regression Splines (MARS) \

- Locally Weighted Learning (LWL)
Locally Estimated Scatterplot Smoothing (LOESS)

\ k-Means
Logistic Regression \ e
k-Medians

Clusteri »
—ng( Expectation Maximization
\_ Hierarchical Clustering
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Possible classifications of ML methods

This was a choice. A “flavour” of ML is determined on:

* the amount and type of supervision during model creation (aka “training”):

+ Supervised, Unsupervised, .. , Reinforcement Learning

whether or not the machine can learn incrementally on the fly

+ online learning versus batch learning

which are the learning criteria and how they generalise

+ instance-based versus model-based learning

on the basis of the algorithm used

¢* .. Mmore ..

All these criteria are not exclusive.
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Supervised, Unsupervised, Reinforcement Learning
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ion nal,

Atfadlt t1 on
Types of ML g 42

There are different types of ML, in terms of “learning algorithms”.

The 3 most populated categories are:

 supervised learning: teach the machine how to learn something from data
* unsupervised |learning: let the machine learn by itself how to learn from data

* reinforcement learning: make the machine learn by feedback

~ ¢*++ 'L*‘-' -
~ t+ T

o \ '
o;;@oo ® \ i 4
o<> S . . :
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Supervised ML Unsuperyigeel L | Relnioreamment Leaning

In supervised learning, the data entries (“instances” or
"examples”) you feed to the algorithm for it to learn (through its
"attributes” - instantiated in"features” - in a process called
“training”) includes the truth info, i.e. the so-called “labels”

* e.g. for a spam detection problem:

Training set

S PX

m New instance
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Supervised ML . (o . o
Classification vs Regression

. . . ) . r. . .. +
A typical supervised learning task is classification S -%.-'
* predict “classes”: binary (0/1, yes/no) or multi-class (A/B/C/D) 0:.“\"‘
o9 s
= e.g. predict “spam” vs “not-spam” in a spam filter oo : B
a B
Another typical supervised learning task is regression s
o>
* predict “target numeric values” (in a continuum of values) o e
o o0 ©
+ e.g. predict the price of a house knowing a set of attributes ,/6:
e
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Supervised ML :
Examples of algorithms

Most commonly used / important:

e Linear Regression

Logistic Regression

Support Vector Machines (SVMs)

k-Nearest Neighbours

Decision Trees and Random Forests

Neural Networks

= NOTE: some neural network architectures can be unsupervised (or self-supervised), e.g.
Autoencoders, or Restricted Boltzmann Machines. Other can be semi-supervised, such as in Deep
Belief Networks..
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SUPERVISCUNVIIE Unsupervised ML @

Example of “unsupervised ML": clustering

In unsupervised learning the training data is unlabeled, so the system tries to
learn without a teacher guiding it

Training set Feature 2

Feature 1

Example: data about blog readers
* run an unsupervised (e.g. hierarchical clustering) algo to detect “groups of similar visitors”

* at no point you tell the algo which group a visitor belongs to, but it finds it out: e.g., it
might detect that 30% are females who comment on your posts on topic X, and usually
read the blog in the evening, etc.
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Unsupervised ML : :
Examples of applications

Example: used to organise large computer clusters, trying to
figure out which machines tend to “work together”: if set-up takes
this into account, the data centre works more efficiently.

Example: social network clustering. Given knowledge about which
friends you message the most, or given your <pick-your-social>
connections, try to automatically identify which are cohesive groups
of people who know each other (or may want to connect).

Example: Market segmentation. Analyse huge DBs of customers’
info and try to automatically group customers into different market
segments, to target advertisement, offers, etc.

Example: e.g. Physics/Astronomy data analysis. Clustering algos
might give insight into possible logical grouping of previously
disconnected data.
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Unsupervised ML )
Examples of algorithms

Clustering — try to detect groups

» K-Means, DBSCAN, Hierarchical Cluster Analysis (HCA), Anomaly detection
and novelty detection, One-class SVM, Isolation Forest, ..

Dimensionality Reduction (and Visualisation) = display/simplity
data w/o losing much info

* Principal Component Analysis (PCA), Kernel PCA, Locally-Linear Embedding
(LLE), t-distributed Stochastic Neighbour Embedding (t-SNE), ..

And more..
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SUPERVISCENVIIE JnsSupervaSealVIIFEEE Reinforcementiicarning

Example of Reinforcement Learning

Reinforcement learning
using experience replay
for the robotic goalkeeper

Initial trials: bad performance

21



Remmtorcementifcarning,

A different approach

Reinforcement Learning is a completely different beast

The learning system is called
“agent” in this context

it observes the environment

select and perform actions

get positive rewards or negative
rewards (i.e. penalties) in return

learning step is define the best

policy to get the most reward
over time

Examples:

/Environment

‘T ? -Agent

‘7 ‘; ® - a Observe
Ba): ;-
_____ - O 0% __ il Select action
a«-"" : J‘F’.\‘\ : m) using policy
4 N
ion!
L ; 0 Action!
-50 points
.e O. ’ Get reward
= or penalty
AN » g *
Update policy
(learning step)
Iterate until an
e optimal policy is
found

* robots implement RL to teach themselves learn how to walk

* DeepMind’s AlphaGo program beat Ke Jie at the game of Go (May 2017)

22
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A common denominator: the training process

Data Training Model Prediction
4 \ , /’O
é_l — —_— —> N

Training = a procedure to calibrate with data the model parameters

 similar to biological systems: the model (e.g. brain structure) is DNA-encoded, and the
parameters (e.g. synaptic weights) are tuned through experiences

Most common techniques is the gradient descent optimisation, i.e. estimation

of optimal model parameters by an iterative method that proceed in steps to
minimise a cost function, towards convergence

= at each step, reassess the gradient (sensitivity) of the prediction errors (pred vs actual) to changes in model
parameters (weights), update such weights, and help converge towards an optimum

The training process is governed by hyper-parameters

* e.g. the size of the steps in gradient descent is determined by a hyper-parameter known as
"learning rate” (there might be plenty morel)
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The search for a minimum in the cost function..

| B B
| | L ——t .

—] ---- epochs: 0

-15 -10 -5 0 5 10 15
Wa
4.801
4.791
N 478
0
o)
©o477]
4.76
475+ , : : :
0 2000 4000 6000 8000
epochs
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.. is challenging with real loss landscapes!

Loss landscape of a VGG-56 Loss landscape of a ResNet-110 (no
(a CNN with 56 layers) skip connections) for CIFAR-10

CAVEAT: These are 3D projections of very high-dimensional functions (still,
helpful to grow your intuition..) — see Stefano’s talk for more details
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Batch learning versus Online learning
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Batch vs Online learning

Batch (offline) learning = more learning requires a new training
* training is offline, and uses all the available data

* it can be resource hungry

= CPU, memory space, disk space, disk I/0, network I/O, etc.

Online learning — the system can be trained incrementally

* training is online, data instances

are fed sequentially Yo <AL
T New data (on the fly)
e data as a continuous flow, and —
fits on limited computing resources '

Train ML
algorithm

Evaluate
solution
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Instance-based versus Model-based learning
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Instance-based vs Model-based learning

“"Generalisation” is key to success of a ML solution

* data — training = measure ability to make predictions on unseen data

Feature 2

A A A\ []
N A O [ Instance-based learning: the system
A\ AO g learns, then generalises to new cases by
LI Training instances comparing them to the learned examples
A & J (or a subset of them), using a similarit
New instance ] [] [] ! 9 y
- N 0 O measure
L
Feature 1
Feature 2 Model &
A A A \\ E’
A A \‘E] [ Model-based learning: a “model” from the
A A A0 O training examples is built, i.e. based on your
A New instance A ] data you make an hypothesis as of how
LA A A S 0O ] each data feature contributes to its label,
[ - ] ml= O O and apply such model to make predictions
B

Feature 1
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Main challenges in ML

Basically, related to:

« bad data ‘

e bad algos

* training technicalities
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Main challenges in ML: Insufficient Quantity of Training Data

Bad data

Deep Neural Networks

Medium Neural Networks

Shallow Neural Networks

Performance

Traditional Machine Learning

Data

Example: a baby learning to distinguish car vs bus vs motorbikes

Large volumes of data (the Volume “V" of Big Data..) are needed.
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Main challenges in ML: Non-representative Training Data
Bad data

E.g. “Survivor bias”

':8:‘:3.' .0.0
ase - °

‘ g o I
e.g.: Abraham Wald '.°o \
f e ol
(during WWII) / ,/‘\ \
| \
: \

e.g.: Brodie helmet
(during WWI)
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Main challenges in ML: Poor-Quality Data

Bad data

THIS 1S YOUR MACHINE LEARNING SYSTETM?
YOP! YOU POUR THE DATA INTO THIS BIG

ML systems are”garbage in PILE OF LINEAR ALGEBRA, THEN COLLECT
. T LHAT IF THE ANGLIERS ARE LIRONG? |
* training data mignht be tull of errors,
outliers, noise (e.g. poor-quality sensor ggg%;mﬁu‘ggbr

measurements)

= — hard to detect underlying patterns

Importance of data preparation
(including data cleaning)

[ credits: xkcd.com |
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Main challenges in ML: Irrelevant Features

Bad data

Success with traditional ML methods also depends on the ability to
feed a training process with data features that enable an effective
learning

* a.k.a. “help the ML system to help you”

So-called "Feature engineering” (at large) can be crucial:

» feature selection: among existing and already collected features, select the
most useful features to train on

» feature extraction: combining existing features to produce a (unreal?) more
useful one (dimensionality reduction algos can help here)

 creating and adding new features (also by gathering new data)
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Main challenges in ML

Basically, related to:

e bad data

* bad algos

* training technicalities

36

. Bonacors



Bad algos

Main challenges in ML: Overfitting / Underfittin%

Underfitting Overfitting

for classification
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Main challenges in ML: Overfitting / Underfittin%

Bad algos

Overfitting (i.e. high variance): a
model performs well on the training o o

data, but it does not generalise well g MonBEs rioh Yerianee
to new, previously unseen data.

 Actions = reduce # features, apply
regularisation, sometimes collect more
training data, ..

5
Underfitting (i.e. high bias): a model * Validation Error
is too simple to learn the underlying
structure of your training data
Training Error
 Actions = selecting a more powerful T
model: add features (feature >
engineering); train more; reduce Model Complexity

constraints on the model, ..
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Main challenges in ML

Basically, related to:

e bad data

e bad algos

* training technicalities

39
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Training + Test

Training technicalities

The only way to know how well a model will generalise to new cases
is to actually try it out on new data.

Basic choice: to splitting into training set and test set

* train the model on the training set, evaluate performance on the test set

+ estimate the “generalisation error”: if high, the model is overfitting

More refined options do exist..
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Training + Validation + Test

Training technicalities

Run a holdout validation process, i.e. use a validation set

* you train multiple models with various hyperparameters on the “reduced”
training set (i.e. full training set minus the validation set), and you select the
model that performs best on the validation set.

* Then, re-train the best model on the full training set (including the validation
set), and this gives you the final model

* Lastly, you evaluate this final model on the test set to get an estimate of the

generalisation error

Dy,
Z‘)n 1 Dng Dlla
Dn 1 Dng D:l 3
Training Set Validation Set Test Set
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Cross-validation

Training technicalities

Cross-validation: split training set in k small "folds” and repeatedly

hold out one fold, i.e. train on k-1 and test on 1

* by averaging out all the evaluations of the model, a much more accurate
measure of its performance can be obtained

= drawback: increase in the requirements on computing resources

Split 1
Split 2

Split 3

Split4 |

Split 5

All Data

Training data

Validation data

Fold1 || Fold 2 ‘ Fold3 | Folda | Fold5 )

Fold 1 \ Fold 2 | Fold 3 [ Fold4  Folds

Fold1 | Fold2 | Fold3 | Fold4 Fold5

Fold1 || Fold2 || Fold3 @ Fold4  Fold5

Fold1 | Fold2 | Fold3 || Fold4 Fold5

> Finding Parameters

Fold1 || Fold2 | Fold3 Fold4 | Fold5

Final evaluation {
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The evolution of ML adoption in HEP (also: at INFN)

“Traditional” ML

Until few years ago, the overall ML@HEP scenario was based on exploiting
field-specitfic knowledge for feature engineering

The approach: Machine Learning

* use physicist-designed high-level
features as input to traditional
shallow ML algorithms

43 D. Bonacorsi



The evolution of ML adoption in HEP (also: at INFN)

Beyond “traditional” ML

Since few years, ML@HEP exploits cutting-edge ML algorithms

* multiple architectures of Neural Networks (NNs), depending on specific use-cases

The approach:

Deep Learning
 use of full high-dimensional feature

: \ O<—70~—0~_0
space to train Deep NNs; growing effort x//// —

™ o/ %K\_) . o 7/ Not C
° . ° ° - P V. ar
in HEP to skip the feature-engineering step 00—~ 0—9
Input Feature extraction + Classification Output

analogy with progresses in Computer Vision and
Natural Language Processing
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Inspiration from biology and neurosciences

The architecture of biological neural networks (BNN) is still the subject
of active research, but some parts of the brain have been mapped, and
we know that neurons are relatively simple and they are connected in
large networks, that are often organized in consecutive layers...

Cell body

Telodendria

Nucleus

Ve u anin Tt “ r
Endoplasmic WD A e —— = - — Tera - 9
reticulum AUAS &3 < w’#ﬁ%ﬁt\? g" ‘M’ \F:.f ‘ - ,\.’ : )
NS N T e Ao 83 T i
M hond ey 3 15 "‘:I-‘ ’ Kﬁ — " LA — “h —- g s
itochondrion o DN . ‘-‘;.u.- N e T A e -, L A~ I
A Yt - ‘ - » -, - , » 4y y
/xk A WIS S e e, o e e "ﬁ ‘@""3& gt
N\

F.5 .- .~ - L “a’” Y ¥ g N S— - 4 ‘- gv‘ o oph e l, o
Dendritic branches ST A T e e ---:.’:M"N-So‘:‘o.“ = £y vé".-"\\'i“’m' - j
Tt e —— i e Y et NI = = » e SIS T WD A0 . o~ 8" Vimn A e N——TL
( .’.‘:' 2 k"m‘ ‘:6. e i . v, - [Ty ‘”?" ' x .\v. T >
’.;‘-'-\o’r -~3M~— T sl GRS L (/7 Ry ~ 7>
P o T 5.
AR _-h_'_‘_é'm:m‘. .- R T e A7) T y“"’:
489 ~ e At i ‘-ﬂ"mﬁ‘h% N Wy D‘ Y Y = .
TR R e _:_--~—'—-‘!¥ e é‘-:-;-... <l F N
e = = ) AN im L, \ \
':”.;?ﬁiiiﬁtnfn@.* e G T BN e . e A e Y
R e IV AT i mAR I 2V I VD M R I s
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From BNN to ANN

ANN as simulation of Biological NN \
DENDRITES
* NN are developed by simulating - NUCLEUS
networks of human neurons -~

The human neuron has a cell body,
a number of input wires (dendrites)

[
and an output wire (axon) / AXON

)

 we can think of it as a computational unit that gets inputs, computes, and spits
output to other neurons (which we will call nodes or units)

 we can think of it simply as a logistic unit that computes some h as a sigmoid

Communication in BNNs is done via
| £ ol . NDE
pulses Ot electriCity

 we can think of I/O passing
in/out numerical values Q —
e a wide network..

Vastly oversimplified model..
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Why NNs as ML algorithms?

Important to model non-linear relationships among attributes, can
avoid the feature engineering step, and can come in many
architectures (like NN “flavours”) and hence are extremely flexible

NNs at the very core of Deep Learning

* versatile, powerful, scalable

Ideal to tackle large and highly complex ML tasks, such as:

classifying billions of images (e.g. Google Images)
* powering speech recognition services (e.g. Siri, Alexa, ..)

* recommending the best videos to watch to O(100M) users every day (e.g.
YouTube)

* learning to beat humans in very specific tasks (e.g. from medical applications
- e.g. radiology - to gaming - e.g. Go and DeepMind'’s AlphaZero)
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Briet history of NNs

1943 (!): first introduction by McCulloch and Pitts

* the first ANN architecture in human history

1960s: the successes of ANNs stopped - the “first Al winter”

Early 1980s: revival of interest in connectionism, new architectures,
better training techniques. Slow progress, though.

1990s: other (not NN) powerful ML techniques were invented, e.qg.
SVMs. Seemed to offer better results and stronger theoretical
foundations than ANNSs - the “second Al winter”

2000s-2010s: a new “Al spring”: why now?
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Why Al now, and not decades ago?

NVIDIA.
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Why Al now, and not decades ago?

A revive and acceleration happened recently, mainly because of
factors that | would list as:

* the raise of Big Data
* the technology progresses (e.g. GPUs)

* “Democratisation” [*] of massive computing resources via Cloud approaches

[*] to be discussed...

Today, it is a fact that DL are among the core transformative
technologies at the basis of most world-wide activities aiming at
extracting actionable insight from (big) data.

51 D. Bonacorsi



Logical computation with neurons

The McCulloch/Pitts model for a biological neuron was later called “artificial
neuron”

* it has 1 (or more) binary (on/off) inputs and 1 binary output (NOTE: all binaries!)

* it activates its output when more than a certain number of its inputs are active (e.g. 2 in
the examples below)

They showed that even with such a simplified model it is possible to build a
network of artificial neurons that computes any basic logical proposition
you want

--------------
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The TLU

1957, Rosenblatt: “Perceptron” as one of the simplest possible ANN
architectures, based on a slightly modified artificial neuron, called threshold

logic unit (TLU) or linear threshold unit (LTU)

* the inputs/output are now numbers (not binary on/off values)

* each input connection is associated with a weight

* the TLU computes a weighted sum of its inputs, applies a step function to that sum,

and outputs the result

TLU Output: hw(X) - Step(xT W)

I Step function: step(z)

> Weighted sum: z=x"w
@ ) ) weins
X1 X2 X3 Inputs

53

-1 ifz<O

heaviside (z) = {0 ?fz<0 sen (@) =10 %f Z=0

1 ifz>0 +1 ifz>0
1-single TLU can act as a

simple linear binary classifier

* linear combination of the
inputs, and depending of the
thresholds = positive/
negative class (just like
Logistic Regression classifier
or a linear SVM)
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The TLU and the Perceptron

A Perceptron is then composed of a single layer of TLUs with each
TLU connected to all the inputs

* in the input layer, an extra bias feature is generally added (xo = 1), via a “bias
neuron” that just outputs 1 all the time

* When all the neurons in a layer are connected to all the neuron in the previous
layer (i.e. here the input neurons), it is called a fully-connected or dense layer

Outputs

This Perceptron can

classify instances TLU
simultaneously into 3

different binary

classes, which makes it Bias Neuron

. . (always outputs 1)
a linear multi-class
classifier Input Neuron

(passthrough)
Inputs
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Why a bias neuron

e 213i2:§::§
Figl2.0%x
0.8
Input Output
X
‘ \VO 6.4
0.2
. ——
-2.2 |
10
. S1gC1.09% + -5%1.0)
Input v e e
X
1 —— —
W Output -
0 sig(\y)*x + % *1.0) eer /
y
0.6 F /’
(//
/
0.4 /‘,/
y
)
0.2
Bias .
1.0
-9.

A bias value allows you to shift the activation function to the
left or right, which may be critical for successful learning
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Training a Perceptron

Input from biology and neurosciences

o 1949, Hebb; “Organization of Behavior”

* Hebb's rule (Hebbian learning): when a biological neuron triggers another
neuron, the connection between these two neurons grows stronger

+ Lowel: “Cells that fire together, wire together”

Largely inspired by Hebb's rule, the Perceptron training algorithm
proposed by Rosenblatt was a weight update

* the Perceptron is fed one training instance at a time. For each instance it
makes its prediction(s). For every output neuron that produced a wrong

prediction, it reinforces the connection weights from the inputs that would
have contributed to the correct prediction
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1969, Minsky/Papert, “Perceptrons”, the monograph
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Multi-Layer Perceptron (MLP)

Minsky/Papert pointed to serious weaknesses of Perceptrons

* in particular its incapability of solving relatively trivial problems, e.g. the exclusive-OR
(XOR) classification problem

= Well, true of any other linear classification model (e.g. Logistic Regression classifiers).. but researchers had
expected much more from Perceptrons! Great disappointment. People dropping off the field..

But.. it soon turned out most limitations of Perceptrons could be eliminated
by stacking multiple Perceptrons! — first concept of “layers”!

The resulting ANN is called a Multi-Layer Perceptron (MLP)

Note that you added an
entire brand new layer to
the original Perceptron
architecture

(see next)
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MLP - FCNN - FFNN

layers of
Signal flows only in - TLUs
. . . \ x'/
one direction: \ Output -~
Feed Forward NN I
, layer
~ "
\ ;
v Hidden
I
&, layer
‘\‘Activation functions important to have
all layer s are FC " some non-linearity between layers
' \
v Input
! layer

A bias unit for each layer

deep stack of hidden layers?
apart from the output one

X — Deep NN (DNN)

2 (Deep Learning sometimes used also
for shallow, non deep, NN)
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Set the weights through training

ACTIVATION

NONLINEAR FUNCTION

(e.g., Sigmoid, tanh, Softmax,
Swish, RelLU, Leaky Rel.U, Diet
Rel.U, Rel.U with Chips, RelU,
Spam, Spam, Rel.U, and Spam.)

In a simplified analogy, the training process is like
a delicate (but automated) sound engineering
process that turns all knobs for the best sound !
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"Non-deep" feedforward

input layer

From shallow to deep NN

Deep neural network

neural network

hidden layer

hidden layer 1 hidden layer 2 hidden layer 3

input layer

\
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From shallow to deep NN

the depth
ion in Deep
D. Bonacorsi

1S

This i
dimens

Learning
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Deep NN.. ok.. but which one?!

Feed Forward (FF) | Deep Feed Forward (DFF)  Recurrent Neural Network (RNN) | Long / Short Term Memory (LSTM)
- 9,9 9,9 -
Ag>‘ N SRR XEERAEXY

RIS IR

Auto Encoder (AE) | Variational AE (VAE) | Denoising AE (DAE) = Sparse AE (SAE)

AN
QX7 \AULX/
DR

Gated Recurrent Unit (GRU)

N/

a\

Markov Chain (MC)

Restricted BM (RBM)

0. .0_0O

63

0 AN AN A %

/.\’/‘\'/g\’/‘\’/“\'

9,
WAV

D. Bonacorsi




Convolutional Neural Networks (CNN)

CNNs are based on strategies that decrease their sensitivity to the absolute
position of elements in an image, making them more robust to noise

» Deep CNNs capable to extract complex features from images
+ e.g. use in self-driving cars, owing to translation-invariant feature learning

* particularly suited for HEP neutrino experiments

= but also in simplified settings in collider experiments)

INFN:
Industry: 3D imaging in detectors, event
large adoption in computer vision tasks classification, ..

Pythia 8, W'— WZ, ¥s =13 TeV

Pixel P, [GeV)

0.5

[Translated] Azimuthal Angle (¢)

-0.5

-1 -0.5 0 0.5 1
[Translated] Pseudorapidity (n)
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p————————— 32 PixELS

every cat, every position, any
angle, portion, light
condition, ..

3072 pixels
(coloured)
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“.. but HEP is different ..”

Is it, really?

Nu: 0.090 Nu: 0.019 100 cm

]

Nu: 0.035

Nu: 0.021
Nu: 0.016

MicroBooNE
Simulation + Data Overlay

Detection of neutrinos on cosmic Detection of airports from satellite
background event (method: CNN) images (method: CNN)
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Recurrent Neural Networks (RNN)

RNNs successful at processing long sequences of data
* based on recurrent neurons (with connections pointing backwards)

* able to treat variable-length input and to process time series by accumulating

and using all the info across a sequence
» e.g. current Google translation service
INFN:
classifiers capable to process complex
signals, or variable-lenght inputs (tracks,
particles in jets, etc)

Industry:
managing “time series”

(audio, video, natural language processing)

CMS Experiment at the LHC, CERN
' Data recorded: 2016-Sep-08 08:30:28.497920 GMT
=

Run / Event / LS: 280327 /

Yit-3) Yt-2) Yie1) Yy

y
= _—_
—
—
x ~
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Autoencoders (AE) and Variational-AE (VAE)

AEs (discriminative models) are feed-forward NN (unsupervised) able
to compress input into a lower-dimensional representation (“latent-
space”, a data-specific compression) and to reconstruct the output

VAEs (generative models) can learn the parameters of a probability
distribution representing the data = can generate new input data
samples

HEP/INFN:
e.g. AEs in Industry: VAEs could isolate new physics as
dimensionality reduction, denoising, ... outliers of known distributions

’ 5 Q Detectors 40 MHz
— Encoder Decoder =
Front-end pipelines

(10" channels)

T Readout buffers

C -
\ RSN RN (1000 units) ik
NN Ny <
X X X = Event builder
N\ SN N M\ (10° x 10° fabric switch)

/ Y NV \ Processor farms
- S~ (4 10 MIPS)
102

Y|_ Hz

[T 11]

[TTTTTTT]

-
NG
-
N
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Generative Adversarial Networks (GAN)

GANs as generative ML models

 designed as 2-NN game where one (generator NN) maps noise to images,
and the other (discriminator NN) classifies the images as real vs fake (the best
generator being the one that maximally confuses its adversary)

Industry: INEN:
image editing, data generation, security, .. Simulate the detector response

(promising alternative to traditional

simulation solutions)

N\ CMS Experiment at the LIAC, CERN
'/ Data recorded: 2016-Sgp-08 08:30:28.497920 GMT
"Z= | Run/Event/LS: 280327 / 55711771/ 67 s
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B
Jupyter notebooks Jupyter
https:/ /jupyterorg/ @ |
Jupyter Untitled file wedshanges @ Logout
File Edit View Insert Cell Kernel Widgets Help |Python2 O
+ % @ B 4+ v N B C Code M CellToolbar

In [ ]:

An open-source web application that allows to create and share code, plots,
documents.

It offers one single environment for:

e code, comments on the code, data analysis + data visualisation
 as well as any additional context (e.g. text, formulas, even media files..)

Perfect for streamlining an entire workflow.

And excellent in the prototyping phase.
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Google Colab(oratory) lab

https://colab.research.google.com/

In a nutshell: Jupyter notebooks on the cloud.

& Untitled1.ipynb '~ B Comment 2% share & Q
File Edit View Insert Runtime Tools Help
+ Code + Text Connect ~ 2 Editing A
> =K

Actions Colab Jupyter
show keyboard shortcuts Ctrl/Cmd M H H
Insert code cell above Ctrl/Cmd M A A
Insert code cell below Ctrl/Cmd M B B
Keyboard ShortcutS: Delete cell/selec.ttion Ctrl/Cmd M D DD
Interrupt execution Ctrl/Cmd M | Il
Google COlab VS ]upyter Convert to code cell Ctrl/lCmd M Y Y
> Convert to text cell Ctrl/Cmd M M M
Split at cursor Ctrl/Cmd M - Ctrl Shift -
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NumPy NumPy

https:/ /numpy.org/

A third-party package added to Python to support scientific computing

* in particular, it provides you with multi-dimensional array objects

» i.e. support matrix manipulation, linear algebra, all operations you might want to do on large collection
of numbers (e.g. plenty in ML)

nature

Explore Content v Journal Information v  Publish With Us v

The NumPy paper on Nature

nature > review articles > article

* https://www.nature.com/articles/
841 5 86_02 0_2649_2 Review Article | Open Access | Published: 16 September 2020

Array programming with NumPy

Charles R. Harris, K. Jarrod Millman &, [...] Travis E. Oliphant

TO b e fo r m a | | y C i te d a S : Nature 5885, 357-362(2020) | Cite this article

212k Accesses | 162 Citations | 2037 Altmetric | Metrics

e Harris, C.R., Millman, K.J., van Abstract

Array programming provides a powerful, compact and expressive syntax for accessing,

d e r Wa |t, S . J o et a I. Arra y manipulating and operating on data in vectors, matrices and higher-dimensional arrays.

NumPy is the primary array programming library for the Python language. It has an essential

p rO g ra m m I n g W I t h rolein research analysis pipelines in fields as diverse as physics, chemistry, astronomy,
geoscience, biology, psychology, materials science, engineering, finance and economics.
N u m Py- Na tu re 5 8 5 I 3 5 7 _3 6 2 For example, in astronomy, NumPy was an important part of the software stack used in the
(2 O 2 O) h t_t DS . //d O i O rq/ 1 O 1 03 8/ discovery of gravitational waves' and in the first imaging of a black hole’. Here we review
° | L 2 et U how a few fundamental array concepts lead to a simple and powerful programming
S4 1 5 8 6 _ O 2 O_ 2 6 4 9 _ 2 paradigm for organizing, exploring and analysing scientific data. NumPy is the foundation

upon which the scientific Python ecosystem is constructed. It is so pervasive that several
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Pandas

https:/ /pandas.pydata.org/

Pandas is an open source library providing high-performance, easy-
to-use data structures and data analysis tools for Python.
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Matplotlib matpl:tlib

https:/ /matplotlib.org/

A package that offers a huge range ot predetined functions to plot
and visualise your data.
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ML tools and frameworks

PYTHRCH

T 0.

@X net TensorFlow machine learning in Python
APACHE &
K

I Keras theano §pq

Most prominent ones:

» Sklearn, Keras/Tensorflow, Pytorch(+fast.ai), ...
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.m Home Installation Documentation ~ Examples

Classification

Identifying to which category an object be-

longs to.

Applications: Spam detection, Image recog-

nition.
____Algorithms: SVM. nearest neiahbors. random

Scikit-learn o

machine learning in Python

Google Custom Search

Regression Clustering
Predicting a continuous-valued attribute asso- Automatic grouping of similar objects into
ciated with an object. sets.
Applications: Drug response, Stock prices. Applications: Customer segmentation,
Algorithms: SVR, ridge regression, Lasso, ... Grouping experiment outcomes
— Evamnlae Alaorithms: k-Means, spectral clusterina,

The £irst labs coill make a large wse of scikit—~learn!
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.F' Tensorflow and Keras K

TensorFlow

Adopt something that provides you with a modern description,

implementation and application of learning algorithms, including
neural networks (of course!)

////”

TensorFlow: Low-|level implementation of operations needed to

implement (e.g.) neural networks in multi-threaded CPU and multi
GPU environments ( basically, all this.. transparently!)

7 5000/ 5dc,éena/ choice

Keras: High-level convenience wrapper for backend libraries, e.g.
Tenso?*w to implement neural network models

a good /7/:9/1—/8\/8/ //Arary, ?a/z‘e handy on Zop of ( '3;9'> 7T ensorfloco
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Both quite popular, and widely adopted

50000 Framework  GitHub Star Count
B TensorFlow ..... 44508

37500 Lo il B scikitlearn ... 16191
B caffe ... 15690
B CNTK .o 9383 1 1

. =l o Bump in 2015 as TF became public
B Torch ... 6285
B Theano ... 5568

12500

0
I;:; ] 2014 I 2015 | 2016 | 2017

Today:

Interest over time X

Numbers represent search interest relative to the highest point on the
chart for the given region and time. A value of 100 is the peak popularity
for the term. A value of 50 means that the term is half as popular. A score

of 0 means that there was not enough data for this term. [ Disclaimer: plenty Of caveats i}’l SL[Ch COmpﬂTiSOTlS.. ]
[google trends] Keras
Tensorflow
Pytorch
4 Jan 2015 . 2 0ct 2016 - ' 1Jul2018 Dec 2020
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Contacts

daniele.bonacorsi@unibo.it

W daniele.bonacorsi
y @DBonacorsi

Thanks for your attention,

please follow Stetano (next) on more details on NNs, and

enjoy the ML_INFN hackaton!
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