
D. Bonacorsi1

What is ML?
(and why it is relevant for INFN)
Daniele Bonacorsi First ML_INFN hackaton, 7-9 June 2021

Definition of ML

D. Bonacorsi2

ML in context

Textual definition(s) of ML

D. Bonacorsi3

“The capacity of a computer to learn from experience, i.e. to modify its processing
on the basis of newly acquired information”

– The Oxford dictionary of statistics terms (today)

“ML is the field of study that gives computers the ability to learn without being
explicitly programmed”

– Arthur Samuel (1959), author of the Samuel Checkers-playing Program (and some TeX..)

“A machine is said to learn from experience E with respect to some class of tasks T
and performance measure P if its performance at tasks in T, as measured by P,

improves with experience E.”

– Tom Mitchell (1997)

Visual definition of ML

D. Bonacorsi4

A pictorial definition (by Nvidia)

“AI”, really?

“AI” terminology perhaps misleading in most practical discussions

Most of AI research today is actually not trying to recreate
intelligence in any shape or form

Aim at collecting data around how humans make decisions, to
perform the same tasks at a scale (LARGE) and latency (SMALL) that
are not humanly possible

• Example: computer vision applications

This is the “artificial intelligence” we are talking about. And a way to
implement it is via Machine Learning techniques.

D. Bonacorsi5

Artificial Intelligence
Automation of task

execution and (eventually)
decision making

Another (last) definition

D. Bonacorsi6

“Classical programming uses rules and data to produce answers.
Machine Learning uses data and answers to produce rules.”

– F. Chollet (author of Keras)

Traditional approach

D. Bonacorsi7

ML approach: data-driven modelling

D. Bonacorsi8

ML approach: Big Data-driven modelling

D. Bonacorsi9

“Big Data” definition
includes Volume, but also

Variety, Velocity, Veracity, etc

Definition of ML

D. Bonacorsi10

Types of ML

The zoo of ML algorithms

Impossible to go into the details of each.. focus on key concepts

D. Bonacorsi11

Possible classifications of ML methods

This was a choice. A “flavour” of ML is determined on:

• the amount and type of supervision during model creation (aka “training”):

❖ Supervised, Unsupervised, .. , Reinforcement Learning

• whether or not the machine can learn incrementally on the fly

❖ online learning versus batch learning

• which are the learning criteria and how they generalise
❖ instance-based versus model-based learning

• on the basis of the algorithm used

• .. more ..

All these criteria are not exclusive.

D. Bonacorsi12

Supervised, Unsupervised, Reinforcement Learning

Batch learning versus Online learning

Instance-based versus Model-based learning

D. Bonacorsi13

Types of ML

There are different types of ML, in terms of “learning algorithms”.

The 3 most populated categories are:

• supervised learning: teach the machine how to learn something from data

• unsupervised learning: let the machine learn by itself how to learn from data

• reinforcement learning: make the machine learn by feedback

D. Bonacorsi14

A traditional,

lightweight classification

15

Supervised ML Unsupervised ML Reinforcement Learning

In supervised learning, the data entries (“instances” or
“examples”) you feed to the algorithm for it to learn (through its
“attributes” - instantiated in“features” - in a process called
“training”) includes the truth info, i.e. the so-called “labels”

• e.g. for a spam detection problem:

Classification vs Regression

A typical supervised learning task is classification

• predict “classes”: binary (0/1, yes/no) or multi-class (A/B/C/D)

❖ e.g. predict “spam” vs “not-spam” in a spam filter

Another typical supervised learning task is regression

• predict “target numeric values” (in a continuum of values)

❖ e.g. predict the price of a house knowing a set of attributes

D. Bonacorsi16

Supervised ML

Examples of algorithms

Most commonly used / important:

• Linear Regression

• Logistic Regression

• Support Vector Machines (SVMs)

• k-Nearest Neighbours

• Decision Trees and Random Forests

• Neural Networks

❖ NOTE: some neural network architectures can be unsupervised (or self-supervised), e.g.
Autoencoders, or Restricted Boltzmann Machines. Other can be semi-supervised, such as in Deep
Belief Networks..

D. Bonacorsi17

Supervised ML

Example of “unsupervised ML”: clustering

18

Supervised ML Unsupervised ML Reinforcement Learning

In unsupervised learning the training data is unlabeled, so the system tries to
learn without a teacher guiding it

Example: data about blog readers

• run an unsupervised (e.g. hierarchical clustering) algo to detect “groups of similar visitors”

• at no point you tell the algo which group a visitor belongs to, but it finds it out: e.g., it
might detect that 30% are females who comment on your posts on topic X, and usually
read the blog in the evening, etc.

Examples of applications

Example: used to organise large computer clusters, trying to
figure out which machines tend to “work together”: if set-up takes
this into account, the data centre works more efficiently.

Example: social network clustering. Given knowledge about which
friends you message the most, or given your <pick-your-social>
connections, try to automatically identify which are cohesive groups
of people who know each other (or may want to connect).

Example: Market segmentation. Analyse huge DBs of customers’
info and try to automatically group customers into different market
segments, to target advertisement, offers, etc.

Example: e.g. Physics/Astronomy data analysis. Clustering algos
might give insight into possible logical grouping of previously
disconnected data.

D. Bonacorsi19

Unsupervised ML

Examples of algorithms

Clustering → try to detect groups

• K-Means, DBSCAN, Hierarchical Cluster Analysis (HCA), Anomaly detection
and novelty detection, One-class SVM, Isolation Forest, ..

Dimensionality Reduction (and Visualisation) → display/simplify
data w/o losing much info

• Principal Component Analysis (PCA), Kernel PCA, Locally-Linear Embedding
(LLE), t-distributed Stochastic Neighbour Embedding (t-SNE), ..

And more..

D. Bonacorsi20

Unsupervised ML

21

Example of Reinforcement Learning

Supervised ML Unsupervised ML Reinforcement Learning

A different approach

Reinforcement Learning is a completely different beast

• The learning system is called  
“agent” in this context

• it observes the environment

• select and perform actions

• get positive rewards or negative  
rewards (i.e. penalties) in return

• learning step is define the best  
policy to get the most reward  
over time

Examples:

• robots implement RL to teach themselves learn how to walk

• DeepMind’s AlphaGo program beat Ke Jie at the game of Go (May 2017)

D. Bonacorsi22

Reinforcement Learning

A common denominator: the training process

Training = a procedure to calibrate with data the model parameters

• similar to biological systems: the model (e.g. brain structure) is DNA-encoded, and the
parameters (e.g. synaptic weights) are tuned through experiences

Most common techniques is the gradient descent optimisation, i.e. estimation
of optimal model parameters by an iterative method that proceed in steps to
minimise a cost function, towards convergence

❖ at each step, reassess the gradient (sensitivity) of the prediction errors (pred vs actual) to changes in model
parameters (weights), update such weights, and help converge towards an optimum

The training process is governed by hyper-parameters

• e.g. the size of the steps in gradient descent is determined by a hyper-parameter known as
“learning rate” (there might be plenty more!)

D. Bonacorsi23

The search for a minimum in the cost function..

D. Bonacorsi24

.. is challenging with real loss landscapes!

D. Bonacorsi25

Loss landscape of a VGG-56  
(a CNN with 56 layers)

CAVEAT: These are 3D projections of very high-dimensional functions (still,
helpful to grow your intuition..) → see Stefano’s talk for more details

Loss landscape of a ResNet-110 (no
skip connections) for CIFAR-10

Supervised, Unsupervised, Reinforcement Learning

Batch learning versus Online learning

Instance-based versus Model-based learning

D. Bonacorsi26

Batch vs Online learning

Batch (offline) learning → more learning requires a new training
• training is offline, and uses all the available data

• it can be resource hungry

❖ CPU, memory space, disk space, disk I/O, network I/O, etc.

Online learning → the system can be trained incrementally

• training is online, data instances  
are fed sequentially

• data as a continuous flow, and  
fits on limited computing resources

D. Bonacorsi27

Supervised, Unsupervised, Reinforcement Learning

Batch learning versus Online learning

Instance-based versus Model-based learning

D. Bonacorsi28

Instance-based vs Model-based learning

“Generalisation” is key to success of a ML solution

• data → training → measure ability to make predictions on unseen data

D. Bonacorsi29

Instance-based learning: the system
learns, then generalises to new cases by
comparing them to the learned examples
(or a subset of them), using a similarity
measure

Model-based learning: a “model” from the
training examples is built, i.e. based on your
data you make an hypothesis as of how
each data feature contributes to its label,
and apply such model to make predictions

Definition of ML

D. Bonacorsi30

Challenges in ML

Main challenges in ML

Basically, related to:

• bad data

• bad algos

• training technicalities

D. Bonacorsi31

Main challenges in ML: Insufficient Quantity of Training Data

Example: a baby learning to distinguish car vs bus vs motorbikes

Large volumes of data (the Volume “V” of Big Data..) are needed.

D. Bonacorsi32

Bad data

Main challenges in ML: Non-representative Training Data

D. Bonacorsi33

Bad data

e.g.: Abraham Wald
(during WWII)

e.g.: Brodie helmet
(during WWI)

E.g. “Survivor bias”

Main challenges in ML: Poor-Quality Data

ML systems are“garbage in
garbage out”

• training data might be full of errors,
outliers, noise (e.g. poor-quality sensor
measurements)

❖ → hard to detect underlying patterns

Importance of data preparation
(including data cleaning)

D. Bonacorsi34

Bad data

[credits: xkcd.com]

Main challenges in ML: Irrelevant Features

Success with traditional ML methods also depends on the ability to
feed a training process with data features that enable an effective
learning

• a.k.a. “help the ML system to help you”

So-called “Feature engineering“ (at large) can be crucial:

• feature selection: among existing and already collected features, select the
most useful features to train on

• feature extraction: combining existing features to produce a (unreal?) more
useful one (dimensionality reduction algos can help here)

• creating and adding new features (also by gathering new data)

D. Bonacorsi35

Bad data

Main challenges in ML

Basically, related to:

• bad data

• bad algos

• training technicalities

D. Bonacorsi36

Main challenges in ML: Overfitting / Underfitting

D. Bonacorsi37

Bad algos

Underfitting Overfitting

for regression

for classification

Main challenges in ML: Overfitting / Underfitting

Overfitting (i.e. high variance): a
model performs well on the training
data, but it does not generalise well
to new, previously unseen data.

• Actions → reduce # features, apply
regularisation, sometimes collect more
training data, ..

Underfitting (i.e. high bias): a model
is too simple to learn the underlying
structure of your training data

• Actions → selecting a more powerful
model; add features (feature
engineering); train more; reduce
constraints on the model, ..

D. Bonacorsi38

Bad algos

Main challenges in ML

Basically, related to:

• bad data

• bad algos

• training technicalities

D. Bonacorsi39

Training + Test

The only way to know how well a model will generalise to new cases
is to actually try it out on new data.

Basic choice: to splitting into training set and test set
• train the model on the training set, evaluate performance on the test set

❖ estimate the “generalisation error”: if high, the model is overfitting

More refined options do exist..

D. Bonacorsi40

Training technicalities

Training + Validation + Test

Run a holdout validation process, i.e. use a validation set

• you train multiple models with various hyperparameters on the “reduced”
training set (i.e. full training set minus the validation set), and you select the
model that performs best on the validation set.

• Then, re-train the best model on the full training set (including the validation
set), and this gives you the final model

• Lastly, you evaluate this final model on the test set to get an estimate of the
generalisation error

D. Bonacorsi41

Training technicalities

Cross-validation

Cross-validation: split training set in k small “folds” and repeatedly
hold out one fold, i.e. train on k-1 and test on 1

• by averaging out all the evaluations of the model, a much more accurate
measure of its performance can be obtained

❖ drawback: increase in the requirements on computing resources

D. Bonacorsi42

Training technicalities

Validation data

The evolution of ML adoption in HEP (also: at INFN)

Until few years ago, the overall ML@HEP scenario was based on exploiting
field-specific knowledge for feature engineering

The approach:

• use physicist-designed high-level  
features as input to traditional  
shallow ML algorithms

D. Bonacorsi43

“Traditional” ML

Since few years, ML@HEP exploits cutting-edge ML algorithms

• multiple architectures of Neural Networks (NNs), depending on specific use-cases

The approach:

• use of full high-dimensional feature  
space to train Deep NNs; growing effort  
in HEP to skip the feature-engineering step

❖ analogy with progresses in Computer Vision and  
Natural Language Processing

D. Bonacorsi44

“Traditional” ML Beyond “traditional” ML

The evolution of ML adoption in HEP (also: at INFN)

Definition of ML

D. Bonacorsi45

Neural Networks

Inspiration from biology and neurosciences

The architecture of biological neural networks (BNN) is still the subject
of active research, but some parts of the brain have been mapped, and
we know that neurons are relatively simple and they are connected in
large networks, that are often organized in consecutive layers…

D. Bonacorsi46

From BNN to ANN
ANN as simulation of Biological NN

• NN are developed by simulating 
networks of human neurons

The human neuron has a cell body,  
a number of input wires (dendrites)  
and an output wire (axon)

• we can think of it as a computational unit that gets inputs, computes, and spits
output to other neurons (which we will call nodes or units)

• we can think of it simply as a logistic unit that computes some h as a sigmoid

Communication in BNNs is done via  
pulses of electricity

• we can think of I/O passing  
in/out numerical values

• a wide network..

Vastly oversimplified model..
D. Bonacorsi47

Why NNs as ML algorithms?
Important to model non-linear relationships among attributes, can
avoid the feature engineering step, and can come in many
architectures (like NN “flavours”) and hence are extremely flexible

NNs at the very core of Deep Learning

• versatile, powerful, scalable

Ideal to tackle large and highly complex ML tasks, such as:

• classifying billions of images (e.g. Google Images)

• powering speech recognition services (e.g. Siri, Alexa, ..)

• recommending the best videos to watch to O(100M) users every day (e.g.
YouTube)

• learning to beat humans in very specific tasks (e.g. from medical applications
- e.g. radiology - to gaming - e.g. Go and DeepMind’s AlphaZero)

D. Bonacorsi48

Brief history of NNs

1943 (!): first introduction by McCulloch and Pitts

• the first ANN architecture in human history

1960s: the successes of ANNs stopped - the “first AI winter”

Early 1980s: revival of interest in connectionism, new architectures,
better training techniques. Slow progress, though.

1990s: other (not NN) powerful ML techniques were invented, e.g.
SVMs. Seemed to offer better results and stronger theoretical
foundations than ANNs - the “second AI winter”

2000s-2010s: a new “AI spring”: why now?

D. Bonacorsi49

Why AI now, and not decades ago?

D. Bonacorsi50

Why AI now, and not decades ago?

A revive and acceleration happened recently, mainly because of
factors that I would list as:

• the raise of Big Data

• the technology progresses (e.g. GPUs)

• “Democratisation” [*] of massive computing resources via Cloud approaches

Today, it is a fact that DL are among the core transformative
technologies at the basis of most world-wide activities aiming at
extracting actionable insight from (big) data.

D. Bonacorsi51

[*] to be discussed…

Logical computation with neurons
The McCulloch/Pitts model for a biological neuron was later called “artificial
neuron”

• it has 1 (or more) binary (on/off) inputs and 1 binary output (NOTE: all binaries!)

• it activates its output when more than a certain number of its inputs are active (e.g. 2 in
the examples below)

They showed that even with such a simplified model it is possible to build a
network of artificial neurons that computes any basic logical proposition
you want

D. Bonacorsi52

inputs

The TLU and the Perceptron
1957, Rosenblatt: “Perceptron” as one of the simplest possible ANN
architectures, based on a slightly modified artificial neuron, called threshold
logic unit (TLU) or linear threshold unit (LTU)

• the inputs/output are now numbers (not binary on/off values)

• each input connection is associated with a weight

• the TLU computes a weighted sum of its inputs, applies a step function to that sum,
and outputs the result

D. Bonacorsi53

TLU
1 single TLU can act as a
simple linear binary classifier

• linear combination of the
inputs, and depending of the
thresholds → positive/
negative class (just like
Logistic Regression classifier
or a linear SVM)

The TLU and the Perceptron
A Perceptron is then composed of a single layer of TLUs with each
TLU connected to all the inputs

• in the input layer, an extra bias feature is generally added (x0 = 1), via a “bias
neuron” that just outputs 1 all the time

• When all the neurons in a layer are connected to all the neuron in the previous
layer (i.e. here the input neurons), it is called a fully-connected or dense layer

D. Bonacorsi54

This Perceptron can
classify instances
simultaneously into 3
different binary
classes, which makes it
a linear multi-class
classifier

Why a bias neuron

D. Bonacorsi55

A bias value allows you to shift the activation function to the
left or right, which may be critical for successful learning

Training a Perceptron

Input from biology and neurosciences

• 1949, Hebb; “Organization of Behavior”

• Hebb’s rule (Hebbian learning): when a biological neuron triggers another
neuron, the connection between these two neurons grows stronger
❖ Lowel: “Cells that fire together, wire together”

Largely inspired by Hebb’s rule, the Perceptron training algorithm
proposed by Rosenblatt was a weight update

• the Perceptron is fed one training instance at a time. For each instance it
makes its prediction(s). For every output neuron that produced a wrong
prediction, it reinforces the connection weights from the inputs that would
have contributed to the correct prediction

D. Bonacorsi56

Multi-Layer Perceptron (MLP)

1969, Minsky/Papert, “Perceptrons”, the monograph

D. Bonacorsi57

Multi-Layer Perceptron (MLP)
Minsky/Papert pointed to serious weaknesses of Perceptrons

• in particular its incapability of solving relatively trivial problems, e.g. the exclusive-OR
(XOR) classification problem

❖ Well, true of any other linear classification model (e.g. Logistic Regression classifiers).. but researchers had
expected much more from Perceptrons! Great disappointment. People dropping off the field..

But.. it soon turned out most limitations of Perceptrons could be eliminated
by stacking multiple Perceptrons! → first concept of “layers”!

The resulting ANN is called a Multi-Layer Perceptron (MLP)

D. Bonacorsi58

Note that you added an
entire brand new layer to
the original Perceptron
architecture

(see next)

MLP - FCNN - FFNN

D. Bonacorsi59

layers of
TLUs

all layers are FC

A bias unit for each layer
apart from the output one

Signal flows only in
one direction:  

Feed Forward NN
(FFNN)

deep stack of hidden layers?
→ Deep NN (DNN)

(Deep Learning sometimes used also  
for shallow, non deep, NN)

Activation functions important to have
some non-linearity between layers

Set the weights through training

D. Bonacorsi60

In a simplified analogy, the training process is like
a delicate (but automated) sound engineering

process that turns all knobs for the best sound !

From shallow to deep NN

D. Bonacorsi61

D. Bonacorsi62

This is the depth
dimension in Deep

Learning

From shallow to deep NN

Deep NN.. ok.. but which one?!

D. Bonacorsi63

Convolutional Neural Networks (CNN)

CNNs are based on strategies that decrease their sensitivity to the absolute
position of elements in an image, making them more robust to noise

• Deep CNNs capable to extract complex features from images

❖ e.g. use in self-driving cars, owing to translation-invariant feature learning

• particularly suited for HEP neutrino experiments

❖ but also in simplified settings in collider experiments)

D. Bonacorsi64

Industry:
large adoption in computer vision tasks

INFN:
3D imaging in detectors, event

classification, ..

65

1024 pixels
(b/w)

3072 pixels
(coloured)

every cat, every position, any
angle, portion, light

condition, ..

66

“.. but HEP is different ..”

Is it, really, to all extents?

D. Bonacorsi67

Detection of airports from satellite
images (method: CNN)

Detection of neutrinos on cosmic
background event (method: CNN)

Bonus feature!

Is it, really?

Recurrent Neural Networks (RNN)
RNNs successful at processing long sequences of data

• based on recurrent neurons (with connections pointing backwards)

• able to treat variable-length input and to process time series by accumulating
and using all the info across a sequence

❖ e.g. current Google translation service

D. Bonacorsi68

Industry:
managing “time series”

(audio, video, natural language processing)

INFN:
classifiers capable to process complex

signals, or variable-lenght inputs (tracks,
particles in jets, etc)

68

Autoencoders (AE) and Variational-AE (VAE)

AEs (discriminative models) are feed-forward NN (unsupervised) able
to compress input into a lower-dimensional representation (“latent-
space”, a data-specific compression) and to reconstruct the output

VAEs (generative models) can learn the parameters of a probability
distribution representing the data → can generate new input data
samples

D. Bonacorsi69

e.g. AEs in Industry:
dimensionality reduction, denoising, …

HEP/INFN:
VAEs could isolate new physics as

outliers of known distributions

Generative Adversarial Networks (GAN)

GANs as generative ML models

• designed as 2-NN game where one (generator NN) maps noise to images,
and the other (discriminator NN) classifies the images as real vs fake (the best
generator being the one that maximally confuses its adversary)

D. Bonacorsi70

Industry:
image editing, data generation, security, ..

INFN:
Simulate the detector response

(promising alternative to traditional
simulation solutions)

Definition of ML

D. Bonacorsi71

Tools and Frameworks

Jupyter notebooks

An open-source web application that allows to create and share code, plots,
documents.

It offers one single environment for:

• code, comments on the code, data analysis + data visualisation

• as well as any additional context (e.g. text, formulas, even media files..)

Perfect for streamlining an entire workflow.

And excellent in the prototyping phase.
D. Bonacorsi72

https://jupyter.org/

Google Colab(oratory)

In a nutshell: Jupyter notebooks on the cloud.

D. Bonacorsi73

https://colab.research.google.com/

Keyboard shortcuts:
Google Colab vs Jupyter

NumPy

A third-party package added to Python to support scientific computing

• in particular, it provides you with multi-dimensional array objects

❖ i.e. support matrix manipulation, linear algebra, all operations you might want to do on large collection
of numbers (e.g. plenty in ML!)

D. Bonacorsi74

https://numpy.org/

The NumPy paper on Nature

• https://www.nature.com/articles/
s41586-020-2649-2

To be formally cited as:

• Harris, C.R., Millman, K.J., van
der Walt, S.J. et al. Array
programming with
NumPy. Nature 585, 357–362
(2020). https://doi.org/10.1038/
s41586-020-2649-2

Pandas

Pandas is an open source library providing high-performance, easy-
to-use data structures and data analysis tools for Python.

D. Bonacorsi75

https://pandas.pydata.org/

Matplotlib

A package that offers a huge range of predefined functions to plot
and visualise your data.

D. Bonacorsi76

https://matplotlib.org/

ML tools and frameworks

Most prominent ones:

• Sklearn, Keras/Tensorflow, Pytorch(+fast.ai), …

D. Bonacorsi77

Scikit-learn

https://scikit-learn.org

D. Bonacorsi78

The first labs will make a large use of scikit-learn!

Tensorflow and Keras

Adopt something that provides you with a modern description,
implementation and application of learning algorithms, including
neural networks (of course!)

TensorFlow: Low-level implementation of operations needed to
implement (e.g.) neural networks in multi-threaded CPU and multi
GPU environments (basically, all this.. transparently!)

Keras: High-level convenience wrapper for backend libraries, e.g.
TensorFlow, to implement neural network models

D. Bonacorsi79

a good high-level library, quite handy on top of (e.g.) Tensorflow

a good backend choice

Both quite popular, and widely adopted

D. Bonacorsi80

Dec 2020

[google trends] Keras

Tensorflow
Pytorch

fastai

[Disclaimer: plenty of caveats in such comparisons..]

Bump in 2015 as TF became public

Today:

daniele.bonacorsi@unibo.it

daniele.bonacorsi

@DBonacorsi

Contacts

D. Bonacorsi81

Thanks for your attention,
please follow Stefano (next) on more details on NNs, and

enjoy the ML_INFN hackaton!

