Software e computing in LHCb: la sfida di Run3 (e oltre)

Concezio Bozzi INFN Sezione di Ferrara CNAF, 23 Febbraio 2021

Outline

The LHCb experiment

- LHCb was designed to study CPviolation and search for New Physics phenomena in heavy flavour (beauty and charm) quark sector
- Single-arm spectrometer, fully instrumented in pseudo rapidity range $2 < \eta < 5$
 - solid angle coverage ~ 4%, 40% B hadrons
- Thanks to its excellent performance, the LHCb detector also gave crucial insights and world-class measurements in other sectors e.g.
 - CP violation in charm
 - Hadron spectroscopy (tetraquarks, pentaquarks...)
 - Electroweak physics
 - Cross-section measurements in fixedtarget mode
 - Heavy-ion physics

The LHCb experiment

- Many of LHCb results obtained in Run1 and Run2 are dominated by statistical uncertainties
- An upgrade of LHCb has therefore been planned and it is currently underway to take data in Run3 and beyond

The LHCb upgrade in a nutshell

- An LHCb Upgraded detector is being installed in 2019-2021 (LHC LS2) and it will take data in Run 3 (2022-2024) and beyond.
- The motivation is to boost the physics output by taking advantage of the huge rate of heavy-flavour production at the LHC. This will be achieved by
 - Raising the instantaneous luminosity by a factor five to 2 x 10³³cm⁻²s⁻¹
 - Number of visible interactions x5 larger
 - Implementing a full software trigger
 - to overcome the limitations of L0 hardware trigger
- Huge increase in precision, in many cases to the theoretical limit, and the ability to perform studies beyond the reach of the current detector.
- Flexible trigger and unique acceptance also opens up opportunities in other topics apart from flavour ('a general purpose detector in the forward region')
- Necessary to redesign several sub-detectors and their readout

CERN-LHCC-2012-007

The upgraded LHCb detector for Run 3

Chris Burr • LHCb full-detector real-time alignment and calibration: Latest developments and perspective • CHEP 2018, Sofia CNAF Seminar, Feb 23rd 2021 C. Bozzi, LHCb Software and Computing

CERN-LHCC-2012-007

The upgraded LHCb detector for Run 3

A big challenge in data handling

- Major expansion of LHCb physics programme through:
 - 5-fold increase in instantaneous luminosity
 - 4x10³² to 2x10³³ cm⁻²s⁻¹
 - Full software trigger at 30MHz inelastic collision rate
 - Factor 2 increase in trigger selection efficiency
- Order of magnitude increase in physics event rate to storage
- Pile-up increase
 - Factor 3 increase in average event size
- 30x increase in throughput from the upgraded detector
 - Without corresponding jump in offline computing resources

A big challenge in data handling

- Major expansion of LHCb physics programme through:
 - 5-fold increase in instantaneous luminosity
 - 4x10³² to 2x10³³ cm⁻²s⁻¹
 - Full software trigger at 30MHz inelastic collision rate
 - Factor 2 increase in trigger selection efficiency
- Order of magnitude increase in physics event rate to storage
- Pile-up increase
 - Factor 3 increase in average event size
- 30x increase in throughput from the upgraded detector
 - Without corresponding jump in offline computing resources

Into Computing Resources

O RLY[?]

Harry Houdini

Outline

Run1 + Run2 trigger

Hardware trigger: based on muon detectors and calorimeters
 Run 2

- Data buffered in between two software trigger stages
- Allows for real-time alignment and calibration Offline-quality reconstruction within the trigger

Luminosity increase: x5

- More interaction vertices per collision of proton bunches, more tracks, more signal
- Beauty and charm signal rates: 1-10MHz
- Almost all events will have a b or c hadron

in Run 3

The MHz signal era

	Signal/	Turning	kinomotion	Tuisson stustom	Triggor	10°	Ē	
	background	signal	kinematics	mgger strategy	efficiency	10 ⁷	Ē	
	0	rates				10 ⁶	(mb)	
GPD	Rare events,	<100kHz	High pT	Local signatures,	Cut at high pT	10 ⁵		
ATLAS	background			Reject	Work at	10"		
′CMS)	dominated			background	efficiency	10°	Ξ (μb) [σ _{jet} (Ε _τ ^{jet} >	1
				select rare	plateau	(qu 10'	-	
LICh	Lligh crocc		Low nT	No "cimplo"	Cut at low pT	10 L	(nb)	
	sections.		Low pi	local criteria	Work at	10 ⁻¹	ε ο _{jet} (Ε _τ > 10	00
	signal			Classify decays	efficiency onset	10 ⁻²	-	
	dominated			Access as much	edge	10 ⁻³	- - (pb)	
				information		10 ⁻⁴		
				collision as early		10 ⁻⁵	_ M _H =125 GeV	$\left\{ \right.$
				as possible		10 ⁻⁶	- (fb)	
				Read full		10 ⁻⁷	WJS2012	
				detector			0.1	

Bottom line: hardware trigger possible at GPDs, not an option for LHCb

The MHz signal era

"From a needle in a haystack to an haystack of needles"

Run 3 trigger

- Remove Hardware trigger in favour of a fully software based one.
- Event reconstruction at collision rate
- Full detector read-out at 40 MHz (visible collision rate: 30MHz)

Run 3 conditions

- Key ingredients for efficient triggering and signal discrimination
 - Primary vertex finding, tracks reconstruction and optimal µ-Identification,
 - Inclusive triggers on signatures with 1&2 "displaced" tracks.
 - Challenge in Run3 is not only to have an efficient trigger, but also be able to identify the topology of events as early as possible in the triggering process: more information than single sub-detector read-out needed
 - Track reconstruction at collision rate required: huge computing challenge

The HLT1 reconstruction sequence

Software performance: early nightmares

- LHCb upgrade online TDR advocates for a trigger farm consisting of O(1000) nodes
- Running HLT1 at 30MHz means that a single node must process O(30k) events/second

Software performance: early nightmares

- LHCb upgrade online TDR advocates for a trigger farm consisting of O(1000) nodes
- Running HLT1 at 30MHz means that a single node must process O(30k) events/second
- First exercise (2016)
 - take upgrade MC simulation and run HLT1 on it by using the most powerful farm node (at that time: dual-Xenon E5-2630V4, 2*10 cores)
 - Resulting throughput: 6k evts/ s
 - 🛪

Software performance: early nightmares

- LHCb upgrade online TDR advocates for a trigger farm consisting of O(1000) nodes
- Running HLT1 at 30MHz means that a single node must process O(30k) events/second
- First exercise (2016)
 - take upgrade MC simulation and run HLT1 on it by using the most powerful farm node (at that time: dual-Xenon E5-2630V4, 2*10 cores)
 - Resulting throughput: 6k evts/ s
 - 888
- Not unexpected though...

Trigger decisions vs. power of trigger farm

Software performance: somewhat expected

- Run1/2 trigger code single-threaded and scalar
- Evolution trend of faster single- threaded CPU performance broken several years ago.
 - Increase of CPU cores and more execution units.
- Gaudi core framework had been in production without major modifications for 17 years
- Its sequential event data processing model leads to
 - Weak scalability in RAM usage
 - Inefficient disk/network I/O

Trigger decisions vs. power of trigger farm

Software performance: much to gain!

- Modernize Gaudi and make it fit for current and forthcoming challenges
- Several improvements:
 - Better utilization of current multiprocessor CPU architectures
 - Enable code vectorization
 - Modernize data structures
 - Reduce memory usage
 - Optimize cache performance
 - Remove dead code
 - Replace outdated technologies
 - Enable algorithmic optimization

HLT1 on CPUs: mission accomplished

- HLT1 throughput on CPUs has been improved by nearly a factor 5 with no loss on physics performance, surpassing the initial requirement
- This has been made possible by:
 - Rewriting algorithms whose performance used not to be critical (e.g. decodings)
 - Improved use of architecture and intrinsic parallelism, through data model, coding and algorithm design (e.g. velo tracking)
 - Previous experience on operating the current detector, leading to trade-offs and revisited models (e.g. simplified Kalman fit, forward tracking)
- And for most algorithms, all of the above \rightarrow no "one fits all" procedure

Velo trackin Forwar

VeloU

Muor

Other

PV finding Track fit (simpl.) 19.04 %

16.23 %

7.23 %

5.00 %

1.02 9

LHCb Simulation

Throughput = 38198.0 Events/s/node

HLT1 on CPUs: mission accomplished

- HLT1 tested on more recent hardware show even better performance
- A full CPU HLT1 would need fewer than 200 EPYC 7502 servers (AMD CPUs)

HLT1 on GPUs ?

- The Allen project began in February 2018 as an R&D project aimed at providing an HLT1 application running on GPUs
- GPUs offer more theoretical FLOPS in a compact package
- Lower cost than CPUs per theoretical FLOPS
- Many HLT1 tasks are inherently parallel

Allen: salient features

- Implement parallelism on GPUs at the block and thread level
- One event per block along with sub-event parallelism

Memory management:

- Memory allocation is done at the start-up of application
- Custom memory manager for GPU memory
- Not dependent on dynamic libraries for memory allocation

Allen performance (early 2020)

- 60 kHz is the miminum requirement for 30 MHz input rate and 500 GPU cards
- Therefore, Allen can handle the full 30 MHz collision rate with < 500 RTX 2080 Ti GPUs from 2018
- Throughput scales well with theoretical TFLOPs, so Allen will speed up as GPUs improve

HLT1 on CPU and GPU: same physics performance

CNAF Seminar, Feb 23rd 2021

C. Bozzi, LHCb Software and Computing

Keine leichte Entscheidung...

- Both CPU and GPU proposals carried out in the last years
- Extensive studies and developments on both architectures
- Brand new algorithms and ideas on pattern recognition developed on both architectures
- Benefits of running HLT1 on CPUs:
 - 1. Seamless integration with current infrastructure and operations minimal changes required
 - 2. Easy scalability
- Benefits of running HLT1 on GPUs:
 - 1. Reduce network bandwidth between EventBuilder and filter farms
 - 2. Free up filter farm CPUs for HLT2 only

Final decision : use GPUs for HLT1

• All the work and experience gained for HLT1 reconstruction using CPUs crucial to achieve large speed-up also for the HLT2 reconstruction.

Practical implementation

GPU-equipped event builder PC, with traffic of all three readout cards.

3 PCIe40

Allen performance (today)

GPU-equipped event builder PC, with traffic of all three readout cards.

- Recent Allen optimizations, and usage of consumer NVIDIA cards allow us to deploy up to 4x the processing power foreseen just one year ago
- Using the 3090 results in one card per EB node, with about 10% headroom remaining. To be validated.

HLT2 status

- The same guiding principles used for optimizing the HLT1 application on CPU hold for HLT2
- However, in addition to track reconstruction, also calorimeters and RICHs must be included
- "Converters" also needed for now
 - They close the gap between CPU- and analysisfriendly event model
 - Their real need depends on evolution of analysis model
- More importantly, about 1000 trigger selection lines must also run and be optimised
- HLT2 throughput rate = HLT1 output rate
 - E.g. 3k CPU nodes would be currently needed by HLT2 to match 1MHz HLT1 total rate

HLT2 selection framework

- O(1000) selections:
 - A very complex graph → execution must be optimised
- Data flow:
 - Configurable algorithms properties
 - User-defined inputs/outputs
- Control flow:
 - What should be run and when to stop
- For the execution:
 - Data dependency constructed by matching inputs/outputs
 - Basic nodes ordering respecting data constraints

- Basic node:
 - One algorithm node
 - List of data dependencies
- Composite nodes:
 - Logic (AND | OR | NOT)
 - "Execute all children" or "allow shortcircuiting"

Basic

node

Composite

node

HLT2 selection framework

- O(1000) selections:
 - A very complex graph → execution must be optimised
- Data flow:
 - Configurable algorithms properties
 - User-defined inputs/outputs
- Control flow:
 - What should be run and when to stop
- For the execution:
 - Data dependency constructed by matching inputs/outputs
 - Basic nodes ordering respecting data constraints

HLT2 selection framework

CNAF Seminar, Feb 23rd 2021

C. Bozzi, LHCb Software and Computing

Vectorization of particle selection algorithms

- Two- and three-body particle combination algorithms are being optimised for speed
- Encouraging results when using vector registers on SoA inputs
- Registers must be well filled in order to benefit from vectorization

Outline

From online to offline: Persistency model

- In Run2, LHCb explored another "dimension" of data handling
- In a typical HEP experiment, the trigger rate (kHz, MHz) is often quoted, then the bandwidth (MB/s, GB/s) is determined by assuming an average event size
 - RAW banks are typically streamed to offline for event reconstruction
- ...but if the event reconstruction is done online by the HLT, then one can decide whether to send offline the entire event or only part of it
- At a fixed bandwidth = rate * event_size, one can then increase the rate, and therefore the physics sensitivity of the experiment, by saving only the "interesting" part of an event!

• Selective persistency: write out only the "interesting" part of the event.

- Turbo stream:
 - Miminum output: only HLT2 signal candidates

Limitations: cannot refit tracks and PVs offline, rerun flavour tagging etc. Advantage: Event size O(10) smaller than RAW

• Selective persistency: write out only the "interesting" part of the event.

- Turbo stream:
 - Miminum output: only HLT2 signal candidates

Optionally: (parts of) pp vertex (e.g. "cone" around candidate for spectroscopy searches)
 Limitations: cannot refit tracks and PVs offline, rerun flavour tagging etc.
 Advantage: Event size O(10) smaller than RAW

• Selective persistency: write out only the "interesting" part of the event.

Turbo stream:

Miminum output: only HLT2 signal candidates

• Optionally: (parts of) pp vertex (e.g. "cone" around candidate for spectroscopy searches) Limitations: cannot refit tracks and PVs offline, rerun flavour tagging etc.

- Advantage: Event size O(10) smaller than RAW
- FULL stream: all reconstructed objects in the event
 - Optionally adding selected RAW banks

• Selective persistency: write out only the "interesting" part of the event.

• Turbo stream:

Miminum output: only HLT2 signal candidates

Optionally: (parts of) pp vertex (e.g. "cone" around candidate for spectroscopy searches)
 Limitations: cannot refit tracks and PVs offline, rerun flavour tagging etc.

Advantage: Event size O(10) smaller than RAW

- FULL stream: all reconstructed objects in the event
 - Optionally adding selected RAW banks
- TurCal stream: HLT2 candidates and RAW banks

• Used for offline calibration and performance measurement CNAF Seminar, Feb 23rd 2021 C. Bozzi, LHCb Software and Computing

Streams and event sizes in Run 2

 Trigger output saved in 3 different streams using different file format

Stream	Content	File format
FULL	Full event information	RDST
Turbo	Selected event information	MDST
Calibration	Full event information + raw banks	RAW or RDST

Run 2 event sizes

stream	event size	event rate	rate	throughput	bandwidth	
	(kB)	(kHz)	fraction	(GB/s)	fraction	
FULL	70	7.0	65%	0.49	75%	E
Turbo	35	3.1	29%	0.11	17%	
TurCal	85	0.6	6%	0.05	8%	
total	61	10.8	100%	0.65	100%	Ī

Event size: Turbo/FULL ~0.5

N.B Turbo event size is an average. It ranges from a few kB (minimal persistence) to full event size

Extrapolation of Run2 rates to Run3 conditions

- With the upgrade conditions several factors need to be applied
 - Luminosity 4*10³² cm⁻²s⁻¹ to 2x10³³ cm⁻²s⁻¹
 - HLT efficiency increase because of removal of L0 hardware trigger
 - Raw event size increase due to pileup, according to simulation
- Without any changes the HLT output rate would increase in Run 3 to 17.4 GB/s

	Run 2 (GB/s)	Lumi	No L0	Raw size	Run 3 (GB/s)	
Full	0.49	x5	x2	x3	14.7	Event size:
Turbo	0.11	x5	x2	x1	1.1	Turbo/FULL ~0.167
Calibration	0.05	x5	x2	x3	1.6	
Total	0.66				17.4	

Evolution of physics programme

- Moving a larger fraction of the physics programme to Turbo decreases the output bandwidth
- Turbo events are considerably smaller (16 % of Full size)
- Some selections need to stay in Full
 - Keep some flexibility, recover from possible errors, develop new analysis ideas

- For the baseline model we assume 60% of the physics selections currently on FULL stream migrating to Turbo
- Massive migration, not trivial!
- Baseline model assumes 73% of the physics selections on Turbo
- Corresponds to a BW of 10 GB/s

Baseline bandwidth: evolution of the model

- Can we fit 10 GB/s in a reasonable amount of storage resources ?
- First attempt, presented in summer 2018 to LHCC and WLCG resulted in an amount of disk 3.5 times larger than what expected in a "constant budget" evolution model !
- mitigation strategies clearly needed

First attempt to fit upgrade data on disk (summer 2018)

Baseline bandwidth: evolution of the model

Idea! Use cheap storage as a safety net :

- save the desired BW on tape
- Profit of *sprucing* to reduce data volume to disk.
- ...but with the possibility of reprocessing
- Operationally more challenging
- Much safer from the physics point of view

- Similar to Turbo trigger selections
- High event retention (~80%)
- Use selective persistence to substantially reduce data volume
- Output format is MDST

Data Processing Workflow per Data Taking Year

Bandwidth to and from tape

- CERN and Tier1 tape must keep up with the data throughput coming from online
- During (Extended-)Year-End-Technical-Stops, data will be recalled from tape
- Not a full re-reconstruction, only another filtering & slimming pass
- The staging throughput depends on the time required to fully stage
 - And on the dataset luminosity
- Expect ~4x increase with respect to Run2

Country	Country Site		Tape Write BW (GB/s)	
CERN		4.24	5.50	
	Tier1 si	ites		
France	CC-IN2P3	0.49	0.63	
Germany	GridKA	0.86	1.12 1.12 0.44	
Italy	CNAF	0.86		
Netherlands	SARA/NIKHEF	0.34		
Russia	RRCKI	0.34	0.44	
Spain	PIC	0.23	0.29	
UK RAL		1.13	1.46	
TOTAL Tier1	sites	4.24	5.50	

What about CPU ?

- CPU is dominated by MC production (~90% of CPU power)
- Expected to be the same at the Upgrade
- Scale current MC production to estimate the CPU needs
- Number of needed MC events scale with luminosity
- Seen "experimentally" in Run 2
- Well justified by physics
 - Events signal-dominated
 - Generally pure selections
 - $L_{int} \ x \ \epsilon_{trig}$ is a good proxy for yield
- Assume the same scaling for Upgrade

Fast(er) simulation

- Assumptions on simulated event volume
 - N. of MC events scales with Lint
 - MC production for a data taking years extends over the following 6 years
 - MC events saved in MDST format (x40 size reduction!)
- Implementation of fast simulation techniques already resulted in a leap in the number of simulated events
 - 2018→2019: 4x and only 30% more CPU

Successful adoption of fast simulations

- Full full Geant4 detector simulation
- PGun single signal particle spawned with kinematics configured to follow distribution (no full pythia event) Factor 50 speed increase
- ReDecay re-use the underlying event but generate and simulate new signal decays every time <u>Eur. Phys. J C78 (2018) 1009</u> Factor 10-20 speed increase
- TrackerOnly simulation Factor 10 speed increase
- SplitSim only simulate full event if required condition is passed e.g. if a photon converts to e+e- Speed up depends on condition

All Events Last 365 Days by Simulation Type

Successful adoption of fast simulations

- Full full Geant4 detector simulation
- PGun single signal particle spawned with kinematics configured to follow distribution (no full pythia event) Factor 50 speed increase
- ReDecay re-use the underlying event but generate and simulate new signal decays every time <u>Eur. Phys. J C78 (2018) 1009</u> Factor 10-20 speed increase
- TrackerOnly simulation Factor 10 speed increase
- SplitSim only simulate full event if required condition is passed e.g. if a photon converts to e+e- Speed up depends on condition

Outline

Data Analysis

- In Run 1 + 2 analysts create nTuples individually ...does not scale well for Run 3
 - 1000s of faulty jobs can be submitted instantly
 - Time consuming O(weeks) for Run 1 + 2 tuples failed jobs re-submitted manually by user
 - No analysis preservation infrastructure
- In Run 3 submit jobs centrally using DIRAC transformation System (Analysis Productions
 - MC data is already produced this way
 - Does not require analyst to babysit jobs
 - Jobs can be tested automatically with GitLab CI
 - Job details/configuration/logs automaticall preserved in LHCb bookkeeping/EOS
 - Automated error interpretation/advice
 - Results displayed on webpage

Offline analysis tools

- Tuples produced using TupleTools creation and saving of variable branches for typical use cases eg. TupleToolTrackInfo
 - Very easy to implement but adds lots of redundant branches can easily save 500+ variables
 - 500GB 10TB of data for a single Run 1+2 analysis nTuples tend to be only used for one analysis
 - **Redesign** of tools such that this redundancy is minimised
- LHCb collaboration uses a wide range of tools C++ /Python/ ROOT/ uproot/ numpy/ pandas/..
- Custom user environments (for use on distributed computing) limited by CVMFS distributions
 - Experimenting with providing analysts the ability to install Conda environments on CVMFS
 - Singularity containers (CERNVM) are used for running legacy applications on grid - looking to expand

Distributed computing

- DIRAC is and remains the LHCb standard for workload and data management
- Current DIRAC design is expected to scale with Run3 workloads and data volumes
- Recent deployments to exploit manycore architectures
 - Use case: Marconi-A2 partition at CINECA, 68x4HT = 272 logical processors
 - DIRAC is able to "partition" the node for optimal memory and throughput
 - Using DIRAC "pool", an <u>inner computing</u> <u>element</u>
 - Parallel jobs matching

Distributed computing

- DIRAC is and remains the LHCb standard for workload and data management
- Current DIRAC design is expected to scale with Run3 workloads and data volumes
- Recent deployments to exploit manycore architectures
 - Use case: Marconi-A2 partition at CINECA, 68x4HT = 272 logical processors
 - DIRAC is able to "partition" the node for optimal memory and throughput
 - Using DIRAC "pool", an <u>inner computing</u> <u>element</u>
 - Parallel jobs matching

10

Distributed computing

- DIRAC is and remains the LHCb standard for workload and data management
- Current DIRAC design is expected to scale with Run3 workloads and data volumes
- Recent deployments to exploit manycore architectures
 - Use case: Marconi-A2 partition at CINECA, 68x4HT = 272 logical processors
 - DIRAC is able to "partition" the node for optimal memory and throughput
 - Using DIRAC "pool", an <u>inner computing</u> <u>element</u>
 - Parallel jobs matching

Data management

- Keep it simple
 - Reasonably small number of sites with storage
 - CERN + 7 Tier1 + ~15 Tier2 with disk
- Job matching based on where data is located, no remote access (except in case of failure), high efficiency
- No caches, no underlying data movements
- Static number of replicas
- Data popularity studies give reasonable utilization
- Following WLCG standards and their evolution for transfers:
 - FTS, TPC, ...
- Not directly involved, but following DOMA activities

Run 3 Computing Model

- Concepts developed and implemented during Run 2 to become predominant
 - Split HLT → real-time alignment and calibration
 - TURBO stream for majority of physics program → RAW events discarded
 - FULL and CALIBRATION streams to insure flexibility
 → filter & slim offline
- Offline CPU computing needs dominated by simulation
 - Number of events to be simulated scales with luminosity
 - Simulation time per event scales with pileup
 - →CPU simulation explodes → need for faster simulations
- Offline storage driven by trigger output bandwidth
 - MC saved in μDST , so little impact on storage

Storage requirements - disk

- Pledge evolution assumes a "constant budget" model (+20% more every year)
- Given as a gauging term

- Max deviation from this model: x1.6
- In line with the model by the end of LS3

Storage requirements - tape

LH	Cb	2020	2021	2022	2023	2024	2025	2026	Average
ТАРГ	PB	92	120	220	320	420	420	420	
TAPE	Increase		30%	84%	45%	31%	0%	0%	29%

- Pledge evolution assumes a "constant budget" model (+20% more every year)
- Given as a gauging term

- Max deviation from this model: x1.8
- \sim in line with the model by the end of LS3
- N.B. tape is considered "cheap"

CPU requirements

LH	Cb	2020	2021	2022	2023	2024	2025	2026	Average
CDU	kHS06	607	1170	1256	2256	3256	4256	5256	
CPU	Increase		93%	7%	80%	44%	31%	23%	35%

- Pledge evolution assumes a "constant budget" model (+20% more every year)
- Given as a gauging term

- Max deviation from this model: x1.8
- Plan to use opportunistic resources, which are however not granted
- Online farm can be used opportunistically when idle (as we do now)

CNAF Seminar, Feb 23rd 2021

C. Bozzi, LHCb Software and Computing

Outline

Towards a phase-II upgrade?

- The recent European Strategy on Particle Physics calls for full exploitation of the high-luminosity LHC
 - Unique opportunity to reach the ultimate precision in flavour physics observables
- R&D in the past couple of years towards a phase-II upgrade of LHCb with yet another factor 5 increase in luminosity (→10³⁴ cm⁻² s⁻¹)
- Technologically challenging for detector technologies...
 - increased pileup, occupancies, radiation
 - Timing information (~10ps) needed to isolate signals

CERN-LHCC-2017-003 CERN-LHCC-2018-027

Physics Case for an LHCb Upgrade II

Opportunities in flavour physics, and beyond, in the HL-LHC era

Towards a phase-II upgrade?

- ...and software & computing
 - Aggressive data reduction by moving processing even closer to the real detector: e.g. real-time tracking with FPGAs
 - A simple extrapolation of Run3 computing model does not scale: resource requirements explode, R&D is needed to exploit new dimensions of computing

