New ideas for a precision measurement of the W boson mass at the LHC

Lorenzo Bianchini

INFN, Sezione di Pisa

Istituto Nazionale di Fisica Nucleare

European Research Council Established by the European Commission

L. Bianchini

Why M_W matters

- W mass is an Electroweak Precision Observable
 - Stress-test of the SM \rightarrow indirect search of NP
- Why is *M*_W remarkable?
 - Phenomenology
 - High sensitivity and robustness of SM prediction.
 - Opportunity
 - Theory more precise than experiment.
 - Case
 - Slight tension with SM prediction.

What we can learn from M_W

• SM at tree-level $\rightarrow M_W$ is a function of 3 parameters: G_{μ} , M_Z , $\alpha_{EM}(M_Z)$

$$M_W^2 \left(1 - \frac{M_W^2}{M_Z^2}\right) = \frac{\pi \,\alpha_{\rm EM}(M_Z)}{\sqrt{2}G_F(1 - \Delta r)},$$

- M_h and m_T enter via **radiative corrections**: $\Delta r \approx 3.6\% [\rightarrow +500 \text{ MeV on } M_W]$
- This relation entails *custodial symmetry* (and the breaking of it):

$$\Delta r = -\frac{3G_F m_t^2}{8\sqrt{2}\pi^2} \frac{\cos^2 \theta_W}{\sin^2 \theta_W} + \frac{11G_F M_W^2}{24\sqrt{2}\pi^2} \log \frac{M_h^2}{M_W^2} + \frac{11G_F M_W^2}{M_W^2} + \frac{11G_F M_W^2}{124\sqrt{2}\pi^2} \log \frac{M_h^2}{M_W^2} + \frac{11G_F M_W^2}{M_W^2} + \frac{11G_F M_W^$$

17.02.21

 M_W in the history of colliders

17.02.21

L. Bianchini

What we know today and what is a useful target

• Consistent at $\sim 2\sigma$. Fluctuation? Missing systematic? Emerging anomaly...?

\rightarrow Target for a <u>new</u> measurement: \leq 10 MeV

- Which future for M_W ?
- Ultimate precision from nextgeneration of lepton colliders (>2040)
 - FCC-ee + 2y at threshold \rightarrow <u>0.5 MeV</u>
 - Beyond the reach of hadron colliders

- LHC has analyzed just a tiny fraction of its data for M_w
 - Strong mandate to probe its limits.

- M_W at hadron colliders
 - Direct production: $pp \rightarrow W^{\pm} \rightarrow l^{\pm}v$
 - Continuous spectrum of W momenta
 - Neutrino *p*₄ unreconstructed
 - No "invariant mass" estimator
 - Use of kinematic variables sensitive to M_W (<u>NOT</u> Lorentz-invariant)
 - Comparison of experimental distributions to model-dependent templates
 - Fit for the "best" M_W

Models of W production

Interlude: notation

W boson dynamics in the lab

Longitudinal dynamics:

$$\frac{d\sigma}{dy} \sim \int dx_1 \, dx_2 \, \delta\left(x_1 x_2 - \frac{Q^2}{s}\right) \delta\left(y - \ln\frac{x_1}{x_2}\right) \left[u(x_1)\bar{d}(x_2) + \dots\right]$$

- "∥" momenta → PDFs
- Transverse dynamics:

$$\frac{d\sigma}{dq_T^2} \sim \frac{1}{q_T^2} \left[1 + O\left(\frac{q_T}{Q}\right) + O\left(\frac{q_T^2}{Q^2}\right) + \cdots \right]$$

• " \perp " momenta \rightarrow W decay

→ <u>Transverse variables</u> best suited for studying M_W

Impact of PDF uncertainty on p_T^l spectrum

PDF mitigation: experimental perspective

PDF mitigation: experimental perspective

- PDFs will also evolve with luminosity
 - Projecting these measurements at HL-LHC $\rightarrow \approx 50\%$ reduction on δ_{PDF}

17.02.21

Transverse motion

- Hadronic recoil \boldsymbol{u}_T is a proxy of \boldsymbol{q}_T $m_T \equiv m(\boldsymbol{p}_T^l, \boldsymbol{p}_T^v) = m(\boldsymbol{p}_T^l, \boldsymbol{u}_T - \boldsymbol{p}_T^l)$
- u_T resolution degraded by high pile-up (and \sqrt{s}) @LHC:

Optimal weights for combining $m_T: p_T^l$ fits at Tevatron and LHC:

$m_{\scriptscriptstyle T}$: $p_{\scriptscriptstyle T}^l$						
CDF @ Tevatron	ATLAS @ LHC7					
0.53 : 0.47	0.14 : 0.86					

→ Modeling of q_T is critical at LHC!

Theoretical prediction and many others... All-order resummation of log-divergent series They a hy. h. Z • plus, matching to fixed-order at finite q_T • State-of-the-art: N³LL + NNLO T, ź. RadISH+NNLOJET 0.12 13 TeV, $pp \rightarrow W^+(\rightarrow \ell^+ + \nu_\ell) + X$ $0 < |\eta_{\ell}| < 2.5, p_{\perp}^{\ell} > 25 \text{ GeV}$ 0.10 . NNPDF3.1 (NNLO) $1/\sigma d\Sigma/dp_{\perp}^{W^{+}}$ Best theoretical precision (%) 0.08 ncertainties with μ_R , μ_F , Q variations 0.06 NNLO 8 M³LL+NNLO MNLL+NLO 0.04 → Which precision Pythia8_AZ 6 . 0.02 4 % needed for 10 MeV Ratio to Pythia8_AZ 1.0 1.0 8.0 8.0 2 on M_W ? 0 5 10 15 20 0.8 10 100 $p_{\perp}^{W^+}$

17.02.21

EPJC 79 (2019) 868

Enhancements to q_T model: theory

- W[±]/Z ratio
 - Common uncertainties cancel in the ratio
 - q_T of Z boson measured to < 1% precision JHEP 12 (2019) 061
- Correlation scheme matters
 - One choice vs another \rightarrow ~ tens of MeV on M_W
 - Reliable and agreed prescription still missing.

Enhancements to q_T model: experiment

- Precision measurement of $W q_T$
 - Special LHC runs can improve $\sigma(u_T)$

- Focus on <u>critical</u> region $q_T \lesssim 5$ GeV
 - Challenging detector resolution even at low PU

20

25

EPJC 78 (2018) 110

17.02.21

L. Bianchini

40

35

 $p_{\tau}^{W,Z}$ [GeV]

30

- Wrapping up on model uncertainties
- ATLAS measurement @ 7 TeV → predominance of **model uncertainties**
 - PDF, QCD contribute by \simeq 8, 9 MeV.

EPJC 78 (2018) 110

Combined categories	Value	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EW	PDF	Total χ^2/dof
	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc. of Comb.
m_{T} - p_{T}^{ℓ} , W^{\pm} , e - μ	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5 29/27

→ Some **breakthrough** needed to reach the **<u>10 MeV target</u>**!

The breakthrough: data!

- LHC \rightarrow <u>high-luminosity</u> discovery machine
 - unprecedented **statistical power** for producing EWK bosons

How to make the best of it?

Ideas for an ancillary measurement

• Measurement of the **rapidity spectrum** for the two **helicity states** of W^{\pm}

- <u>Observation</u>: 2D spectrum (p_T^l, η^l) provides simultaneous information on rapidity and helicity of the W^{\pm} .
- $y \in h$ depend on quark flavor and momentum \rightarrow constraint *in situ* of PDFs
 - Corroborated by recent CMS work [PRD 102 (2020) 092012]

Towards an agnostic model

- Precision measurement of differential spectrum
 model constraint
 - Can one push this **paradigm** to its limit?
- <u>First principles</u>: generic cross-section for $pp \rightarrow V \rightarrow Iv$:

17.02.21

- Towards an agnostic model
- Eq. [1] \rightarrow joint p.d.f. (p_T^l, η^l) as a linear combination of a **finite** and **complete** set of templates:

$$\frac{\Delta^2 \sigma}{\Delta p_T^l \Delta \eta^l} = \sum_{\Delta q_T, \Delta |y|} \frac{\Delta^2 \sigma_{-1}}{\Delta q_T \Delta |y|} \left(T_{-1}(p_T, \eta \mid \mathbf{M}_{\mathbf{W}}) + \sum_{i=0\dots4} A_{i,\Delta q_T,\Delta |y|} \times T_i(p_T, \eta \mid \mathbf{M}_{\mathbf{W}}) \right)$$

- Normalizations $\rightarrow W$ production & decay dynamics
- Template shape $\rightarrow M_W$

 $arphi^*$ \mathbf{q}_T ► cos **θ*** ---0.00064 norm = 0.6986 norm = 0.6986 norm = 0.6992 0.00056 45 45 45 0.00048 0.00040 40 40 40 p_T^l p_T^l p_T^l 0.00032 35 35 35 0.00024 0.00016 30 30 30 0.00008 25 ∟ _3 25 ∟ _3 25 L 0.00000 1 -1 1 -1 1 -2 -1 0 2 -2 0 2 3 -2 0 2 3 Ξ η^l η^l η^l

Towards an agnostic model

17.02.21

-

17.02.21

L. Bianchini

Proof of concept

- Which statistical precision on M_W?
 - Studied on MC simulation (~1300 templates, ~300 free parameters)

17.02.21

L. Bianchini

Experimental challenges

- ΔM_W (stat.) = 4 MeV \rightarrow L_{int} \simeq 300/fb.
 - Possible with Run2 + Run3
 - $\mathcal{O}(100)$ more events than any M_W measurement to date
- Challenge: keep experimental systematics under control
 - Background subtraction
 - Detector calibration
 - Residual theory uncertainty
- Experiment → <u>CMS</u>
 - Superior performance Tracker + μ-system:
 - ightarrow Priority to measurement with muons

Example: momentum scale calibration

- <u>Target</u>: $\Delta p/p < 10^{-4}$
 - ~300 nm biases on mean track curvature;
 - unique use-case for such a precision!
- Intense B-field + silicon tracker
 - J/Ψ as standard candle \rightarrow closure on the Z
 - $\sim 2 \times 10^{-4}$ achieved at 7 TeV [CMS-PAS-SMP-14-007]
- An historical & ongoing effort driven by CMS group
 @ SNS

Expected performances

- Three scenarios of increasing experimental success:
 - $\Delta M_W \simeq 10$ MeV appears to be a robust deliverable
 - ➔ Possible by overcoming the <u>model-dependence</u> bottleneck

		Stat.	Exp.	Bkg.	QCD	EW	PDF	Tot.	
Reference (AT	TLAS @7 TeV)	7	6	5	8	6	9	19	
	Conservative	4	8	5	3	3	3	11	~2 better than
ASYMOW	Intermediate	4	4 / 8	5/3	3	3	3	9 / 10	single- experiment to date
	Aggressive	4	4	3	3	3	3	8	

Not just M_W

- Multi-differential model is a "nuisance"... but also a <u>by-product</u>
 - Tighter **PDF** constraints
 - Benchmark for **precision calculations**
 - e.g., a recoil-free measurement of q_T

17.02.21

- One last idea...

- ASYMOW \rightarrow profile the full underlying production mechanism while measuring M_W
 - Can it be done with **fewer nuisances**?

- A subtle point of invariance
 - Remember the famous π^0 decay...

- A subtle point of invariance
 - Remember the famous π^0 decay...

A subtle point of invariance

An energy-only M_W measurement?

Conclusions

- Three ways towards a precision measurement:
 - enhancements to theory models,
 - enhancements to the experiments,
 - a *Third Way*:
 - Novel
 - Challenging
 - Competitive

A project for the next years!

Grazie per la vostra attenzione!

Cosa possiamo imparare da mW

17.02.21

Predizione teorica

 $\begin{aligned} 80.3535 \pm 0.0027_{m_t} \pm 0.0030_{\delta_{\text{theo}}m_t} \\ \pm 0.0026_{M_Z} \pm 0.0026_{\alpha_S} \\ \pm 0.0024_{\Delta\alpha_{\text{had}}} \pm 0.0001_{M_H} \pm 0.0040_{\delta_{\text{theo}}M_W} \end{aligned}$

17.02.21

L. Bianchini

- Why then longitudinal dynamics also matters?
 - Mostly an **acceptance** artefact

- Why then longitudinal dynamics also matters?
 - Mostly an **acceptance** artefact

- Why then longitudinal dynamics also matters?
 - Mostly an **acceptance** artefact

- Why then longitudinal dynamics also matters?
 - Mostly an acceptance artefact

Measurements of q_T spectra

17.02.21

Measurements of q_T spectra

PDF uncertainty vs acceptance

PRD 91 (2015) 113005

Normalized distributions							
Cut on p_{\perp}^{W}	Cut on $ \eta_l $	CT10	NNPDF3.0				
Inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014				
$p_{\perp}^W < 20 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012				
$p_{\perp}^{\overline{W}} < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009				
$p_{\perp}^{\overline{W}} < 10 \text{ GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007				
$p_{\perp}^{\overline{W}} < 15 \text{ GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017				
$p_{\perp}^{\overline{W}} < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009				
$p_{\perp}^{\overline{W}} < 15 \text{ GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003				
$p_{\perp}^{\overline{W}} < 15 \text{ GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012				

A new look at PDF uncertainty

• p_T^l spectrum <u>alone</u> enough to constrain all the PDF uncertainty at high lumi

• Just use correlation pattern with p_T^l

$$\chi^2_{k,\min} = \sum_{(r,s)\in\text{bins}} (\mathcal{T}_{0,k} - \mathcal{D}^{\exp})((C^{-1})_{rs})(\mathcal{T}_{0,k} - \mathcal{D}^{\exp})_s$$

→ δ_{PDF} → 1 MeV with 300/fb!

- Looser constraints when detector included
 - Also handling of q_T not straightforward in this setup


```
Towards an agnostic model
```

• From Eq. [1]: joint p.d.f. (p_T, η) as a linear combination of a finite and complete set of <u>templates</u>:

17.02.21

Master formula for spin-1 energy spectrum

$$\begin{split} f(x) &= \int \frac{dy}{y} h(y) \int_{\frac{1}{2} \left(\frac{x}{y} + \frac{y}{x}\right)}^{+\infty} d\gamma \, g(\gamma) \\ &\times \frac{3}{8} \left[\frac{1 + \frac{1}{2} A_0(\gamma)}{(\gamma^2 - 1)^{\frac{1}{2}}} + \frac{A_4(\gamma)}{(\gamma^2 - 1)} \left(\frac{x}{y} - \gamma\right) + \frac{1 - \frac{3}{2} A_0(\gamma)}{(\gamma^2 - 1)^{\frac{3}{2}}} \left(\frac{x}{y} - \gamma\right)^2 \right] \end{split}$$

 $f(1+\epsilon) \approx A + B\epsilon + C|\epsilon| + D\epsilon^2 + E|\epsilon|\epsilon + F\epsilon^3 + G|\epsilon^3| + H\epsilon \ln|\epsilon| + \mathcal{O}(\epsilon^3)$

Testing on MC

