

Physics Beyond SM With Kaons at NA62

Jacopo Pinzino

G.A. 754496

INFN Seminars 24/02/21

The NA62 Experiment

- NA62: High precision fixed-target Kaon experiment at CERN SPS
- Main goal: measurement of BR($K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$)
- Broader physics program: LFV / LNV in K⁺ decays, hidden sector particles searches.

 $\Rightarrow p (proton) \Rightarrow ion \Rightarrow neutrons \Rightarrow \overline{p} (antiproton) \Rightarrow \Rightarrow proton/antiproton conversion \Rightarrow neutrinos \Rightarrow electron$

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

AD Antiproton Decelerator CTF-3 Clic Test Facility CNCS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-TDF Neutrons Time Of Hight

NA62 Timeline

- 2008: NA62 Approval
- 2014: NA62 Pilot Run (partial layout)
- 2015: Commissioning run
- Full detector installation completed in September 2016
- 2016 : First $\pi \nu \nu$ dataset in 2016
- Continuous data-taking until the end of 2018
- data-taking will be resumed in 2021 with improvements

~ 200 participants from: Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna, GMU-Fairfax, Ferrara, Firenze, Frascati, Glasgow, Lancaster, Liverpool, Louvain, Mainz, Moscow, Napoli, Perugia, Pisa, Prague, Protvino, Roma I, Roma II, San Luis Potosi, Torino, TRIUMF, Vancouver UBC

The $K \rightarrow \pi \upsilon \overline{\upsilon}$ decay

- High sensitivity to New Physics
- FCNC process forbidden at tree level
- Highly CKM suppressed (BR ~ $|V_{ts}xV_{td}|^2$)

- Very clean theoretically: Short distance contribution
- hadronic matrix element extracted from precisely measured BR(K⁺ $\rightarrow \pi^0 e^+ \upsilon$)
- Precise SM predictions: [Buras et al. JHEP 1511 (2015) 33] $BR(K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}) = (8.4 \pm 1.0) \times 10^{-11}$ $BR(K_L \rightarrow \pi^0 \upsilon \overline{\upsilon}) = (3.4 \pm 0.6) \times 10^{-11}$
- **Previous Experimental Result:**

 $BR(B^+ \rightarrow \tau^+ \upsilon) = (0.77^{+0.98}_{-0.52}) \times 10^{-4}$ $BR(B \rightarrow K\mu^+\mu^-) = (0.99^{+0.40+0.13}_{-0.32-0.14}) \times 10^{-6}$ $BR(B^- \rightarrow \rho^- \eta') = (6.26 \pm 1.70 \pm 0.34) \times 10^{-6}$ BR(B_d → $\phi\eta$) = (1.18 ± 0.84 ± 0.03) × 10⁻⁹

 $BR(K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon})(E787/E949) = (17.3^{+11.5}_{-10.5}) \times 10^{-11}$ [Phys. Rev. D 77, 052003 (2008), Phys. Rev. D 79, 092004 (2009)] $BR(K_L \rightarrow \pi^0 \upsilon \overline{\upsilon})$ (E391a) < 2.6 × 10⁻⁸ (90% C.L) [Phys. Rev. D 81, 072004 (2010)]

FCNC

- High sensitivity to New Physics
- FCNC process forbidden at tree level
- Highly CKM suppressed (BR ~ $|V_{ts}xV_{td}|^2$)
- Very clean theoretically: Short distance contribution

$$H_{eff}^{SM} = \frac{G_F}{\sqrt{2}} \frac{\alpha}{2\pi \sin^2 \theta_W} \sum_{l=e,\mu,\tau} (V_{cs}^* V_{cd} X^l + V_{ts}^* V_{td} X(x_t)) (\bar{s}d)_{V-A} (\bar{\nu}_l \nu_l)_{V-A}$$

- *G_F* is the Fermi constant,
- *α* is the electromagnetic coupling constant,
- ϑ_W is the weak mixing angle,
- X' are functions describing the contribution of the c-quark to the amplitude A₁ (with $l = e, \mu, \tau$),
- $X(x_t)$ is function describing the contribution of the t-quark,
- $(\bar{s}d)_{V-A}$ and $(\bar{v}_l v_l)_{V-A}$ are the quark and lepton neutral weak currents with vector axial vector structure.

The contribution is proporzional to the square of the loop particles: For example $x_t = m_t^2/M_W^2$

$K \to \pi \upsilon \overline{\upsilon}$ and New Physics

Measurement of charged ($K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$) and neutral ($K_L \rightarrow \pi^0 \upsilon \overline{\upsilon}$) modes can discriminate among different NP scenarios

- Models with CKM-like flavor structure (Models with MFV) [Buras, Buttazzo, Knegjens, JHEP11(2015)166]
- Custodial Randall-Sundrum

[Blanke, Buras, Duling, Gemmler, Gori, JHEP 0903 (2009) 108]

• Simplified Z, Z' models

[Buras, Buttazzo, Knegjens, JHEP11(2015)166]

- Littlest Higgs with T-parity
 [Blanke, Buras, Recksiegel, Eur.Phys.J. C76 (2016) 182]
- LFU violation models

Leptoquarks

[Isidori et al., Eur. Phys. J. C (2017) 77: 618]

- [S. Fajfer, N. Košnik, L. Vale Silva, arXiv:1802.00786v1 (2018)]
- MSSM analyses [Blazek, Matak, Int.J.Mod.Phys. A29 (2014) no.27],[Isidori et al. JHEP 0608 (2006) 064]

$K \to \pi \upsilon \overline{\upsilon}$ and New Physics

Measurement of charged ($K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$) and neutral ($K_L \rightarrow \pi^0 \upsilon \overline{\upsilon}$) modes can discriminate among different NP scenarios

- Models with CKM-like flavor structure (Models with MFV)
 [Buras, Buttazzo, Knegjens, JHEP11(2015)166]
- Custodial Randall-Sundrum

[Blanke, Buras, Duling, Gemmler, Gori, JHEP 0903 (2009) 108]

• Simplified Z, Z' models

[Buras, Buttazzo, Knegjens, JHEP11(2015)166]

- Littlest Higgs with T-parity
 [Blanke, Buras, Recksiegel, Eur.Phys.J. C76 (2016) 182]
- LFU violation models

Leptoquarks

[Isidori et al., Eur. Phys. J. C (2017) 77: 618]

[S. Fajfer, N. Košnik, L. Vale Silva, arXiv:1802.00786v1 (2018)]

MSSM analyses [Blazek, Matak, Int.J.Mod.Phys. A29 (2014) no.27],[Isidori et al. JHEP 0608 (2006) 064]

$K \to \pi \upsilon \overline{\upsilon}$ and New Physics

Measurement of charged ($K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$) and neutral ($K_L \rightarrow \pi^0 \upsilon \overline{\upsilon}$) modes can discriminate among different NP scenarios

- Models with CKM-like flavor structure (Models with MFV) [Buras, Buttazzo, Knegjens, JHEP11(2015)166]
- Custodial Randall-Sundrum

[Blanke, Buras, Duling, Gemmler, Gori, JHEP 0903 (2009) 108]

• Simplified Z, Z' models

[Buras, Buttazzo, Knegjens, JHEP11(2015)166]

- Littlest Higgs with T-parity
 [Blanke, Buras, Recksiegel, Eur.Phys.J. C76 (2016) 182]
- LFU violation models

[Isidori et al., Eur. Phys. J. C (2017) 77: 618]

Leptoquarks

[S. Fajfer, N. Košnik, L. Vale Silva, arXiv:1802.00786v1 (2018)]

MSSM analyses [Blazek, Matak, Int.J.Mod.Phys. A29 (2014) no.27],[Isidori et al. JHEP 0608 (2006) 064]

$K \to \pi \upsilon \overline{\upsilon}$ and the LFU violation

The Measurement of $K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$ together with $B^+ \rightarrow K^{*+} \upsilon \overline{\upsilon}$ can **can probe the Lepton-Flavour Universality**

- An interactions responsible for LFU violations can couple mainly to the third generation of lefthanded fermions;
- K → πυυ is the only kaon decays with thirdgeneration leptons (the τ neutrinos) in the final state;
- A deviations from the Standard Model predictions in $K \to \pi \upsilon \overline{\upsilon}$ branching ratios should be closely correlated to similar effects in $B \to K^{(*)} \upsilon \overline{\upsilon}$.

EPJ C (2017) 77: 618

$K \rightarrow \pi \upsilon \overline{\upsilon}$ Experimental State of the Art

$K \rightarrow \pi \upsilon \overline{\upsilon}$ Today

• **EXAMPLE 1** experiment at JPARC: $K_L \to \pi^0 \nu \overline{\nu}$

• **NA62** \land experiment at CERN: $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

$K \rightarrow \pi \upsilon \overline{\upsilon}$ Today

• **EXAMPLE :** $K_L \to \pi^0 \nu \overline{\nu}$

• **NA62** \bigcirc experiment at CERN: $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

$K \to \pi^0 \upsilon \overline{\upsilon}$ at KOTO

Hermetic detector and efficient photon detection

Outcome from 2016-17-18 data:

• SES = 6.9×10^{-10}

- Total background from data expected = 1.05 ± 0.28
- 0.04 SM signal events expected
- 4 (3) events found in signal region: marginally consistent with the expected background
- *K*⁺ background found: now the largest one
- Dedicated run 2020: estimation of the *K*⁺ background
- Upgrade: New charged veto detector to reduce the K^+ background

BR(K_L → $\pi^0 \upsilon \overline{\upsilon}$)(SM) = (3.4 ± 0.6) × 10⁻¹¹ BR(K_L → $\pi^0 \upsilon \overline{\upsilon}$)(KOTO) < 3.0 × 10⁻⁹ (2015 data)

> [Phys. Rev. Lett. 122, 021802 (2019)] [https://indico.cern.ch/event/868940/contributions/3815582/]

0.0

JACOPO PINZINO

Some photos

Analysis Strategy

- New Decay in flight technique
 - K⁺ production cross section increases with the proton energy
 - the detection of photons from background decays is easier at high energy

P_K

- Signal: 1 beam track, 1 charged track, nothing else
- Background: K⁺ decay modes; beam activity
- Kinematics: $m_{miss}^2 = (P_{K^+} P_{\pi^+})^2$

Key analysis requirements:

- 2 signal regions in m²_{miss}
- $15 < P_{\pi^+} < 35$ (45 in 2018) GeV/c
- 60 m long decay region

Experimental principles:

- 1. Precise kinematic reconstruction
- 2. PID: K upstream, $e / \mu / \pi$ downstream
- 3. Hermetic γ detection
- 4. Sub-ns timing

Keystone:

- O (100 ps) Timing between sub-detectors
- O (10⁴) background suppression from kinematics
- > 10⁷ Muon suppression

P_v

- > 10⁷ π^0 (from K⁺ → $\pi^+ \pi^0$) suppression
- Signal and background control regions are kept blind throughout he analysis
- 7 categories in 2018 (hardware configurations and momentum)
- use of MVA for particle identification and upstream background rejection

Signal Selection

Result of 2016 and 2017 data taking

2018 data after signal selection

<u>v)</u>		Error budget S.E.S.			
	Trigger efficiency	5%			
	MC acceptance	3.5%			
	Random Veto	2%			
	Background(normalization)	0.7%			
	Instantaneous intensity	0.7%			
	Total	6.5%			
		15			
 K⁺→π⁺π⁰ decay used for normalization Cancellation of systematic effects (PID, Detector efficiencies, kaon ID and beam related acceptance loss) 					
			V		
$SES = (1, 11 \pm 0.07) \cdot 10^{-11}$					

Background from Kaon Decay Estimation

Upstream background

- Pions produced upstream the fiducial volume
 - Early K⁺ decay
 - Interaction of beam particles with the beam spectrometer material
- Pions can be associated to an accidental particle of the beam line
- Dangerous if coupled with pion scattering in the first spectrometer chamber
- Kaon-pion association and geometrical cuts effective
- The geometrical origin of those events allow to define samples for backgrounds validation
- Data driven background estimation

Background summary

Process	Expected events in R1+R2 (2018 data)
$\mathrm{K}^{+} ightarrow \pi^{+} \upsilon \overline{\upsilon} \ (\mathrm{SM})$	$7.58 \pm 0.40_{syst} \pm 0.75_{ext}$
Total Background	5.28 ^{+0.99} -0.74
$K^+ \rightarrow \pi^+ \pi^0(\gamma)$	0.75 ± 0.04
$K^+ \rightarrow \mu^+ \nu_{\mu}(\gamma)$	0.49 ± 0.05
$K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$	$0.50 \pm 0.11 - $
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	0.24 ± 0.08
$K^+ \rightarrow \pi^+ \gamma \gamma$	< 0,01
$K^+ \rightarrow \pi^0 l^+ \nu$	<0,001
Upstream Background	$3.3^{+0.98}_{-0.73}$

Background expectations validated in control regions using a blind procedure

Control regions: main decays

Control regions: $K^+ \rightarrow \pi^+ \pi^- e^+ v_e$ and upstream

The sensitivity of some control samples comparable to the S.E.S.

Before unblinding 2018 data

Result

5.3 background + 7.6 SM signal events expected, 17 events observed

m_{miss}^2 signal and background in the 2018 data

$K \to \pi \upsilon \overline{\upsilon}$ Result and historical context

$K \rightarrow \pi \upsilon \overline{\upsilon}$ result and SM

Future (<2025)

NA62 (Run2):

• Hardware improvements

KOTO (step 1):

- Main ring power increase
- Hardware improvements

Future (≥2025)

K Facility at CERN:

- K⁺/K⁰
- NA62-like / KLEVER

KOTO (step 2):

KLEVER

• Hardware upgrade

Result summary

Result from the complete Run 1(2016 + 2017 + 2018):

- Observed events: 1 (2016) + 2 (2017) + 17(2018) = 20 (Run 1)
- Expected background ~0.2 (2016) + 1.5 (2017) + 5.3 (2018) = 7 (Run 1)
- Br(K⁺ $\rightarrow \pi^+ v \bar{v}) = (11.0^{+4.0}_{-3.5 \text{ stat}} \pm 0.3_{\text{syst}}) \cdot 10^{-11} (3.5 \sigma \text{ significance})$
- The most precise measurement of the BR obtained so far

The result is compatible with the SM prediction within one standard deviation

The next Run (2021):

- NA62 will resume data-taking in 2021
- Modifications of the NA62 beam line, installation of an additional beam spectrometer station and a veto counter to reduce upstream background
- New calorimeter downstream of MUV and upstream of the beam dump to further suppress kaon decay background
- More information can be found in the <u>NA62 SPSC addendum</u>

NA62: Broader physics program

- Rare kaon decays
- LNV/LFV in kaon decays
- Exotic searches:
 - O HNL searches [PLB 807 (2020) 135599]
 - O Dark Photon [10.1007/JHEP05(2019)182]
 - \circ Axion-like particle

LFV & LNV in Kaon Decays

Violation of LN and LF conservation laws predicted in BSM models (for example via Majorana neutrinos or leptoquark)

Previous experimental results:

- BR(K⁺ $\rightarrow \pi^- e^+ e^+$) < 6.4 × 10⁻¹⁰ @ 90% CL [BNL E865 : PRL 85 2877 (2000)]
- BR(K⁺ $\rightarrow \pi^{-}\mu^{+}\mu^{+}) < 8.6 \times 10^{-11}$ @ 90% CL [CERN NA48/2 : PL B769 67 (2017)]

LNV/LFV searches in NA62:

- 2017 + 2018 data
- Blind analysis
- Normalization to SM decays ($K^+ \rightarrow \pi^+ |+|^-$ and $K^+ \rightarrow \pi^+ \pi^-$)
- Acceptance:
 - \circ ~5% for K⁺→π⁻e⁺e⁺ and K⁺→πeµ
 - \circ 10% for K⁺→π⁻μ⁺μ⁺
- Main background is due to pion mis-identification and pion decays in flight

LFV & LNV results

Decay	Previous <i>BR</i> upper limit @ 90% CL [PDG]	NA62 BR upper limit @ 90% CL	
$K^+ \rightarrow \pi^- \mu^+ \mu^+$	8.6×10^{-11}	4.2×10 ⁻¹¹	Improve by factor 2 with 17 data [<i>PLB 797 (2019) 134794</i>]
$K^+ \to \pi^- e^+ e^+$	6.4×10^{-10}	2.2×10^{-10}	Improve by factor 3 with 17 data [<u><i>PLB 797 (2019) 134794</i>]</u>
$K^+ \to \pi^- \mu^+ e^+$	5.0×10 ⁻¹⁰	4.2×10 ⁻¹¹	Improve by factor 12 with 17+18 data
$K^+ \rightarrow \pi^+ \mu^- e^+$	5.2×10 ⁻¹⁰	6.6×10 ⁻¹¹	Improve by factor 8 with 17+18 data
$K^+ \to \pi^+ \mu^+ e^-$	1.3×10^{-11}		Not yet competitive with previous dedicated experiment
$K^+ \to \mu^- \nu e^+ e^+$	2.1×10 ⁻⁸		Stay tuned $SES \sim 1 \times 10^{-10}$ [17 data]
$K^+ \to e^- \nu \mu^+ \mu^+$	No previous limit		Stay tuned $SES \sim 5 \times 10^{-11}$ [17 data](first search)
	•	•	V V

Exotic searches example: HNL

A generic possibility of **k** sterile neutrino mass states:

$$\nu_{\alpha} = \sum_{i=1}^{3+k} U_{\alpha i} \nu_{i} \quad (\alpha = e, \mu, \tau),$$

The "neutrino portal" is motivated by its relation to neutrino mass generation.

The vMSM: the most economical theory accounting for v masses and oscillations, baryogenesis, and dark matter. [Asaka, Blanchet, Shaposhnikov,

PLB 631 (2005) 151]

Three Heavy Neutral Leptons (HNLs): m₁~10 keV [DM candidate]; m_{2.3}~1 GeV/c².

GeV-scale HNLs can be observed via their **production** and **decay**.

HNL summary

- Full 2016 18 data set for $|U_{e4}|^2$, ~1/3 of the data set for $|U_{\mu4}|^2$.
- Improvement over earlier production searches by up to two orders of magnitude in terms of |U_{ℓ4}|².
- For |U_{e4}|², the BBN-allowed range is excluded up to 340 MeV.

[PLB 807 (2020) 135599]

 For |U_{µ4}|², the sensitivity approaches the E949 one; the search extends to 383 MeV.

Rare Kaon Decay example: $(K^+ \rightarrow \pi^+ \mu^+ \mu^-)$

FCNC decay described in the scope of ChPT, mediated by one photon exchange $K^+ \rightarrow \pi^+ \Upsilon^*$

[Nucl. Phys. B291 (1987) 692–719], [Phys. Part. Nucl. Lett. 5 (2008) 76–84]

Together with $K^+ \rightarrow \pi^+ e^+ e^-$ allow to Test the Lepton Flavour Universality. A precise measurement of these decays could provide an evidence complementary to the B anomaly seen by LHCb.

> [Phys. Rev. Lett. 122, 191801 (2019)] [JHEP 02, 049 (2019)]

Preliminary result $K^+ \rightarrow \pi^+ \mu^+ \mu^-$

- $N_{\kappa} \approx 6.76 \cdot 10^{12}$ using the 2017+2018 data sample
- Preliminary $K_{\pi\mu\mu}$ result consistent with $K_{\pi ee}$ FF parameters \rightarrow no tension in LFU observed

LFU Fellini project

I have started recently a FELLINI project that aims to measure precisely (enhancing the precision by a factor 5) the form factor parameters a and b, by collecting O(200k) candidates of $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ and $K^+ \rightarrow \pi^+ e^+ e^-$ decays.

Current limitations:

- Statistic error: during the 2016-2018 run there was a trigger downscaling conditions that limited the collected statistic;
- Systematics error:
 - The main source of systematic error is due to the tracks' reconstruction algorithm (optimized for one track events, mis-reconstruction due to accidental hits);
 - A secondary source of error is due to the trigger inefficiency: STRAW tracker high level trigger and charged hodoscope hardware trigger.

$$a_{NA62}^{\mu\mu} = -0.564 \pm 0.034_{stat} \pm 0.024_{syst} \pm 0.001_{ext} = -0.564 \pm 0.042$$

$$b_{NA62}^{\mu\mu} = -0.797 \pm 0.118_{stat} \pm 0.114_{syst} \pm 0.003_{ext} = -0.797 \pm 0.164$$

Conclusion

$K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$:

- Result from the complete Run 1(2016 + 2017 + 2018) compatible with the SM prediction within one standard deviation
- Br(K⁺ $\rightarrow \pi^+ v \bar{v}) = (11.0^{+4.0}_{-3.5 \text{ stat}} \pm 0.3_{\text{syst}}) \cdot 10^{-11} (3.5\sigma \text{ significance})$
- The most precise measurement of the BR obtained so far

- Upper limit improved for LFV and LNV channels ($K^+ \rightarrow \pi^- l^+ l^+$ and $K^+ \rightarrow \pi e \mu$)
- $|U_{\mu4}|^2$ and $|U_{e4}|^2$ limit improved for the HNL
- Preliminary $K_{\pi\mu\mu}$ result consistent with $K_{\pi ee}$ FF parameters

GigaTracker (GTK)

Beam Conditions:

- Overall Rate 750 MHz
- In beam centre 140 KHz/pixel

Precision:

- Hit Time resolution < 200 ps
- Direction resolution = 16 µrad
- Momentum resolution = 0.2%

- Thicknes = 500 μ m (< 0.5% X₀)
- Total area = 62.8 x 27 mm²

KTAG

- Filled with nitrogen (N2) at 1.75 bar at room temperature
- total of $3.5 \times 10^{-2} X_0$ of material
- Can be filled with H_2 (7 x 10⁻³ X₀)
- Time resolution = 70 ps

Straw Tracker

- Ultra-thin Straws installed in Vacuum
- 4 Chambers each measures 4 coordinates (views)
- High accuracy (130µm per View)
- High efficiency
- Straws: 2.1m long and φi =9.8mm;
- Straw Material: 50 nm Cu + 20 nm Au on 36 μm of Mylar
- Total 7168 Straws (4x4x4x112)
- Gas: Ar/CO2 (70/30)
- Material Budget of the Spectrometer: 1.8% of X0

RICH

- 17.5 m long
- 4.2 m wide
- 18 hexagonal mirrors
- Neon at about 990 mbar
- Time resolution < 100 ps

Large-angle veto system (LAV)

- 12 stations
- Full geometric coverage from 8.5 to 50 mrad
- In only 0.2% of K⁺→π⁺ π⁰, decayed in the fiducial region, one photon is outside acceptance
- Inefficiency < 10⁻⁴

Liquid Krypton Calorimeter

- quasi-homogeneous calorimeter
- filled with about 9000 litres of liquid krypton at 120 K
- 127 cm depth (27 X₀)
- 13248 longitudinal cells with a cross section of about 2 x 2 cm²

Muon Veto

MUV 1 + 2

- iron/scintillator sandwich
- 24(MUV1) and 22(MUV2) detection layers
- Alternating horizontal and vertical scintillator strips

MUV3

- After 80 cm of iron
- Fast muon trigger
- Tiles scintillators + PMT

- Maximum likelihood fit using signal and background expectation in each category ۲
- Two samples with different hardware configurations in 2018:
 - 2018_S1 ~80% of the 2018 dataset, 5 GeV/c wide bins from 15-45 GeV/c Ο
 - 2018_S2 ~ 20% of the 2018 dataset, integrated over momentum Ο
 - 2016 and 2017 datasets, integrated over momentum added as separate categories 0

$K^+ \rightarrow \pi^- \mu^+ \mu^+$

- Expected background in the blinded region: 0.91 ± 0.41
- One candidate observed in the signal region
- BR(K⁺ $\rightarrow \pi^{-}\mu^{+}\mu^{+}) < 4.2 \cdot 10^{-11} @ 90\% CL$

$K^+ \rightarrow \pi^- e^+ e^+$

- Expected background in the blinded region: 0.16 ± 0.03
- No candidate observed in the signal region
- BR(K⁺ $\rightarrow \pi^{-}e^{+}e^{+}) < 2.2 \cdot 10^{-10} @ 90\% CL$

 $K^+ \rightarrow \pi^- \mu^+ e^+$ and $K^+ \rightarrow \pi^+ \mu^- e^+$

Data Sample

- Number of K⁺ in fiducial volume:
 - \circ (3.52 ± 0.02) \cdot 10¹² positron case
 - \circ (4.29 ± 0.02) \cdot 10⁹ muon case
- A spike in the continuous m_{miss} spectrum is a HNL production signal

00

Acceptance & single event sensitivity

Definitions: $BR_{SES} = 1/(N_K A)$, $|U_{\ell 4}|^2_{SES} = BR_{SES} / [BR(K^+ \rightarrow l^+ \upsilon) \rho_{\ell}(m_N)]$.

Upper limits on BR $(K^+ \rightarrow l^+N)$

- 90% CL
- Upper Limit vs HNL mass hypothesis

- In the e⁺ case, maximum local significance of 3.6 for m_N=346 MeV/c².
- Accounting for look-elsewhere effect, global significance = 2.2

HNL Comparison to decay searches

(CERN-PBC-REPORT-2018-007; update: Gaia Lanfranchi, PBC meeting, 6 Nov 2019)

HNL Comparison to decay searches

Selection for each HNL mass hypothesis (m_{HNL}) includes a "mass window" condition: $|m-m_{HNL}| < 1.5\sigma_m$

HNL Comparison to decay searches

(CERN-PBC-REPORT-2018-007; update: Gaia Lanfranchi, PBC meeting, 6 Nov 2019)

24/02/2021

References (ICHEP 2020)

- Radoslav Marchevski: New result on the search for the K+ to pi+ nunu decay at the NA62 experiment at CERN (pdf slides)
- Evgueni Goudzovski: Search for heavy neutral lepton production at the NA62 experiment (pdf slides)
- Lubos Bician: New measurement of the K+ to pi+ mu+ mu- decay at NA62 (pdf slides)
- Joel Swallow: Searches for lepton flavour and lepton number violation in K+ decays (pdf slides)