

Particle therapy masterclass LASA and INFN-MI group

Therapy planning of Liver and Prostate

Schools:

Students:

Liceo Scientifico «Donatelli-Pascal», Milano ITIS «Mattei», San Donato Milanese Liceo scientifico «Ballerini», Seregno IIS «Curie-Sraffa», Milano

De Guzman Angelo

Porta Francesco

Tagliabue Alessia

Riva Matteo

Russo Federico

Luzzini Jacopo

Zucchetti Tommaso

Mattellini Giovanni

Vllmasi Dariel

Carioni Chiara

COMPARISON BETWEEN SINGLE PHOTON AND SINGLE PROTON BEAM FOR LIVER

COMPARISON BETWEEN SINGLE AND MULTIPLE PHOTON BEAMS

TABLE OF CONTENT

COMPARISON FOR PHOTON, PROTON
THERAPY AND CARBON ION THERAPY FOR
LIVER

DOSE DELIVERY TO THE OARS AS A FUNCTION OF THE ANGLE FOR A SINGLE PHOTON BEAM FOR PROSTATE

CONCLUSION

COMPARISON BETWEEN SINGLE PHOTON AND SINGLE PROTON BEAM FOR LIVER

Photon therapy

- Best angle for photon therapy (180°), single beam, minimum effects on OARs (heart - spinal cord - skin)
- More amount of radiation for heart

Proton therapy

- Best angle for proton therapy (315°), single beam, minimum effects on OARs (heart - spinal cord - skin)
- Less amount of radiation for heart

COMPARISON BETWEEN SINGLE AND MULTIPLE PHOTON BEAMS

- Single beam
- Ineffective method, radiation dispersion on sensitive tissues although in small dose
- 270*

Three beams

- The best solution that we found with 3 beams is the following one: 0-15-310 degrees.
- In this way the damage reported by the vital organs are minimum, while the tumor is well stricken by the radiations

Five beams

- By using 5 photons the result is way less optimal, the vital organs are damaged by the radiations.
- There is no difference in spreading the beams between 0 and 360 degrees or between 180 and 360 degrees. The result is still better if we use three beams.

COMPARISON BETWEEN SINGLE AND MULTIPLE PHOTON BEAMS

Single beam
 Three beams

Five beams

COMPARISON FOR PHOTON, PROTON THERAPY AND CARBON ION THERAPY FOR LIVER

- Photon
- Liver's irradiation using a 0, 180, 225, 270, 315° angle with 5 photon beams
- Proton
- Liver's irradiation using a 285° angle with a single proton beam
- Carbon Ion
- Picture of liver irradiation using a 0° angle with a single carbon beam

COMPARISON FOR PHOTON, PROTON THERAPY AND CARBON ION THERAPY FOR LIVER

	Max dose	Mean dose	
	Skin	Heart	Stomach
Photons	1,5206	0,2159	0,0232
Protons	1,8349	0,0251	0
Carbon lons	1,6937	0,0175	0

	PTV		
	Max. dose	Min. dose	Mean dose
Photons	1,5206	1,3903	1,4965
Protons	1,7953	0,8226	1,4915
Carbon lons	1,6937	1,0604	1,4947

DOSE DELIVERY TO THE OARS AS A FUNCTION OF THE ANGLE FOR A SINGLE PHOTON BEAM FOR PROSTATE

We compared PTV68, bladder and rectum mean doses for various angles (multiples of 30°), and graphed the results. In the graph, we notice that the best angle for the treatment is 90° (minimum dose delivery to the OARs and maximum to the PTV).

	Mean Dose		
Angle (deg)	PTV68	Bladder	Rectum
0	2,1216	1,8692	1,2706
30	2,1338	2,1799	1,4792
60	2,1680	1,7563	1,4315
90	2,1845	0,9996	1,1566
120	2,1433	1,3691	1,7507
150	2,0980	1,4923	1,9375
180	2,1060	1,2659	1,6385

CONCLUSIONS

- Comparing treatments between single photon and proton beams for the liver we found that the second one was better because of the lower skin dose and more uniform PTV dose.
- A better result is obtained by using more photon beams and by choosing angles that permit to avoid OARs.
- We can conclude that the best therapy for liver is the one with carbon ions, using a 0 degree angle, because the damages to skin, heart and stomach are the lowest between the ones calculated.
- We found that the entry angle for a single photon beam that minimizes the damage to the OARs in a prostate treatment is of 90°. The mean dose to the PTV is not a function of the angle.

