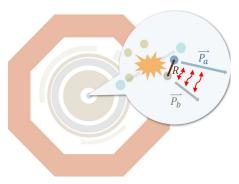


<u>LHC</u>

Small collision systems: - pp 13 TeV

⇒ particles emitted from ~1fm source


LHC

Small collision systems:

- pp 13 TeV
- ⇒ particles emitted from ~1fm source

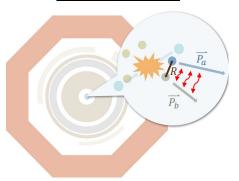
ALICE detector

Central barrel tracking and PID

Reconstruction of hyperons

- Λ→pπ
- $\Xi \rightarrow \Lambda \pi$
- $\Omega \rightarrow \Lambda K$

Allow to study up to S = -3, \mathbf{p} - Ω

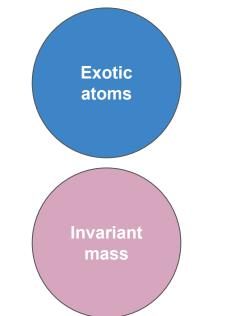

LHC

Small collision systems:

- pp 13 TeV
- ⇒ particles emitted from ~1fm source

ALICE detector

Central barrel tracking and PID:


Reconstruction of hyperons:

- Λ→pπ
- $\Xi \rightarrow \Lambda \pi$
- $\Omega \rightarrow \Lambda K$

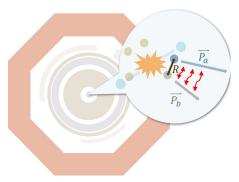
Allow to study up to S = -3, \mathbf{p} - Ω

Hadron physics

Experimental data for the study of hadron-hadron interactions with strangeness content

Scattering data

Hyper nuclei

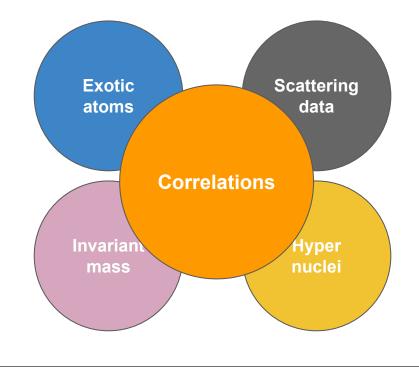

LHC

Small collision systems:

- pp 13 TeV
- ⇒ particles emitted from ~1fm source

ALICE detector

Central barrel tracking and PID:

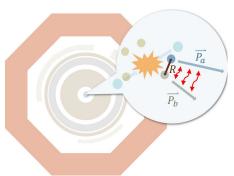

Reconstruction of hyperons:

- Λ→pπ
- $\Xi \rightarrow \Lambda \pi$
- $\Omega \rightarrow \Lambda K$

Allow to study up to S = -3, **p-\Omega**

<u>Hadron physics</u>

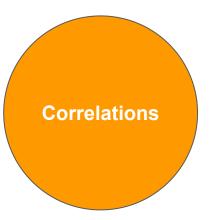
Experimental data for the study of hadron-hadron interactions with strangeness content


LHC

Small collision systems:

- pp 13 TeV
- ⇒ particles emitted from ~1fm source

ALICE detector

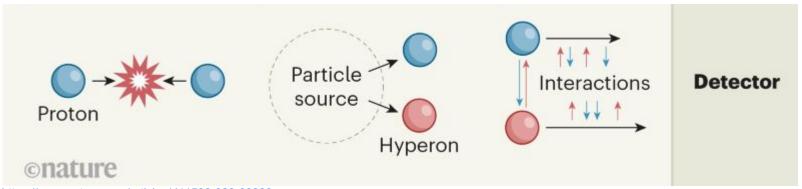

Central barrel tracking and PID:

Reconstruction of hyperons:

- Λ→pπ
- $\Xi \rightarrow \Lambda \pi$
- $\Omega \rightarrow \Lambda K$

Allow to study up to S = -3, \mathbf{p} - Ω

Hadron physics


- **Precise data in the low momentum range**, in most cases not accessible with other approaches.
- **Test/constraint** ChET, meson exchange models, Lattice QCD, etc
- Consequences for, e.g., appearance of strange particles in neutron stars, existence of strange di-baryons

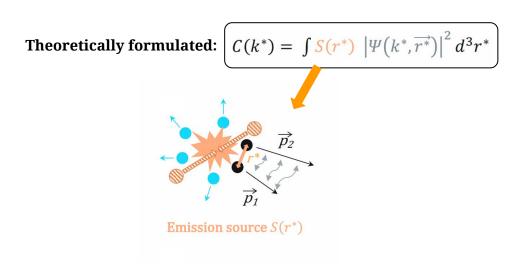
Correlation method

- Femtoscopy-like studies
- Detailed knowledge of the source of particles

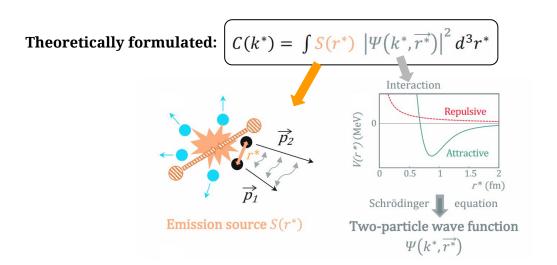
Experimental results:

- K⁻-p
- p-Ω⁻

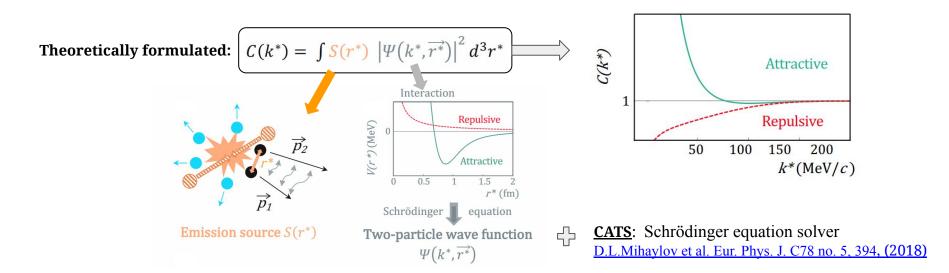
https://www.nature.com/articles/d41586-020-03393-z

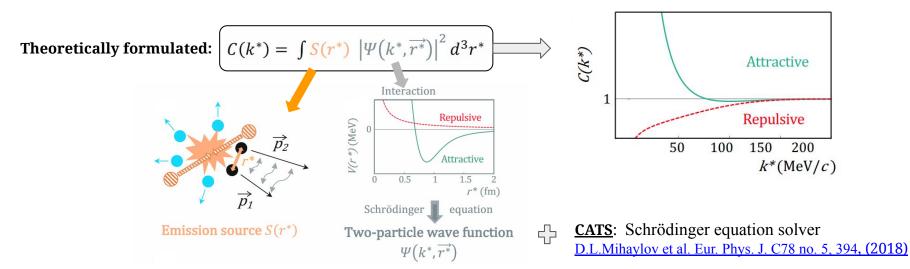

<u>Femtoscopy</u> (HBT) analyses in **Heavy Ions Collisions**:

- Study pairs of particles with "known" interaction
- Centered in **study the dimensions of the source** (2-5 fm)

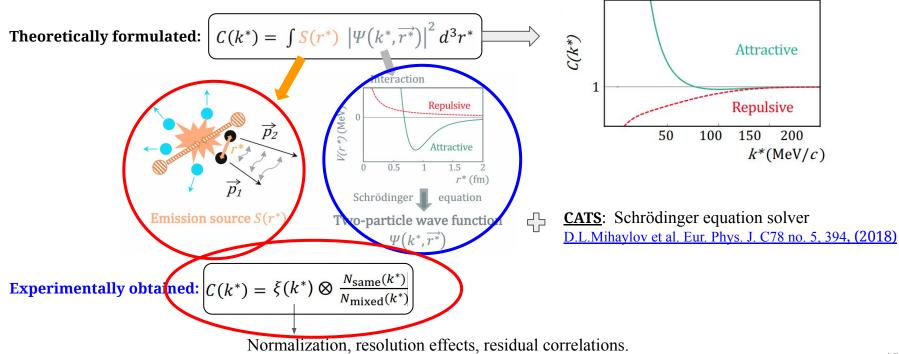

Based on the correlation function
$$C(k^*) = \frac{P(\overrightarrow{p_a}, \overrightarrow{p_b})}{P(\overrightarrow{p_a})P(\overrightarrow{p_b})}$$
, with $k^* = |\overrightarrow{p_2}^* - \overrightarrow{p_1}^*|/2$ and $p_1^* = -p_2^*$

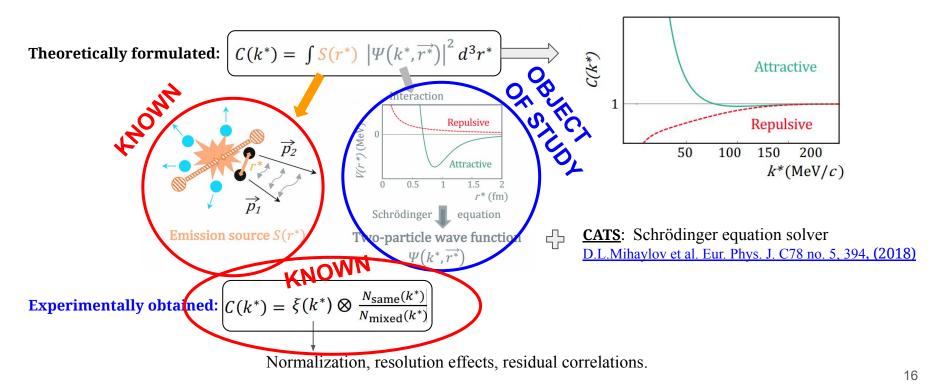
Theoretically formulated:
$$\left(C(k^*) = \int S(r^*) \left| \Psi(k^*, \overrightarrow{r^*}) \right|^2 d^3r^* \right)$$


Based on the correlation function $C(k^*) = \frac{P(\overline{p_a}, \overline{p_b})}{P(\overline{p_a})P(\overline{p_b})}$, with $k^* = |\vec{p_2}^* - \vec{p_1}^*|/2$ and $p_1^* = -p_2^*$


Based on the correlation function $C(k^*) = \frac{P(\overline{p_a}, \overline{p_b})}{P(\overline{p_a})P(\overline{p_b})}$, with $k^* = |\vec{p_2}^* - \vec{p_1}^*|/2$ and $p_1^* = -p_2^*$

Based on the correlation function $C(k^*) = \frac{P(\overrightarrow{p_a}, \overrightarrow{p_b})}{P(\overrightarrow{p_a})P(\overrightarrow{p_b})}$, with $k^* = |\overrightarrow{p_2}^* - \overrightarrow{p_1}^*|/2$ and $p_1^* = -p_2^*$


Based on the correlation function $C(k^*) = \frac{P(\overline{p_a}, \overline{p_b})}{P(\overline{p_a})P(\overline{p_b})}$, with $k^* = |\vec{p_2}^* - \vec{p_1}^*|/2$ and $p_1^* = -p_2^*$


Experimentally obtained: $C(k^*) = \xi(k^*) \otimes \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)}$

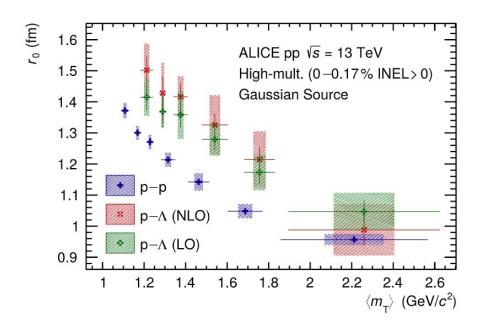
Normalization, resolution effects, residual correlations.

Based on the correlation function $C(k^*) = \frac{P(\overrightarrow{p_a}, \overrightarrow{p_b})}{P(\overrightarrow{p_a})P(\overrightarrow{p_b})}$, with $k^* = |\overrightarrow{p_2}^* - \overrightarrow{p_1}^*|/2$ and $p_1^* = -p_2^*$

Based on the correlation function $C(k^*) = \frac{P(\overline{p_a}, \overline{p_b})}{P(\overline{p_a})P(\overline{p_b})}$, with $k^* = |\overrightarrow{p_2}^* - \overrightarrow{p_1}^*|/2$ and $p_1^* = -p_2^*$

Otón Vázguez Doce

Ansatz: similar source for all hadron-hadron pairs in small collision systems

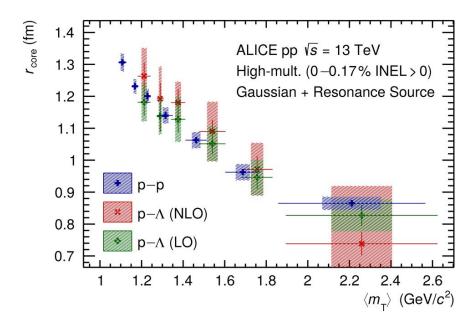

Source characteristics **determined via femtoscopic analysis of p-p, p-A correlations**

- p-p strong interaction described by AV18 potential R. B. Wiringa et al., Phys. Rev. C51 (1995) 38
- p-Λ interaction described by ChEFT at LO H. Polinder et al., Nucl. Phys. A779, 27 (2006) 244, NLO Y. Ikeda et al., Phys. Lett. B706 (2011) 63

Ansatz: similar source for all hadron-hadron pairs in small collision systems

Source characteristics **determined via femtoscopic analysis of p-p, p-Λ correlations**

- **Transverse mass** < m_T > **dependence** (collective effects in small systems?)

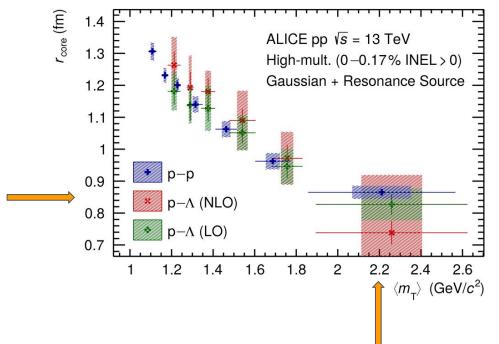


"Search for a common baryon source in high-multiplicity pp collisions at the LHC", ALICE Coll., Phys. Lett. B811, 10, 135849 (2020)

Ansatz: similar source for all hadron-hadron pairs in small collision systems

Source characteristics **determined via femtoscopic analysis of p-p, p-A correlations**

- **Transverse mass** < m_T > **dependence** (collective effects in small systems?)
- Effect of strong short-lived resonances computed for all hadrons F. Becattini et al. J. Phys. G38 (2011) 025002
 - Decomposition in gaussian "core" source convoluted with non-gaussian tails due to resonances



"Search for a common baryon source in high-multiplicity pp collisions at the LHC", ALICE Coll., Phys. Lett. B811, 10, 135849 (2020)

Ansatz: similar source for all hadron-hadron pairs in small collision systems

Source characteristics **determined via femtoscopic analysis of p-p, p-A correlations**

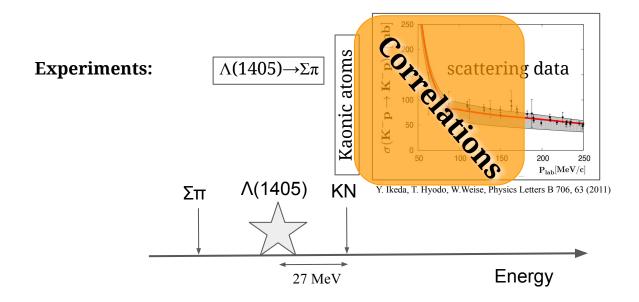
- **Transverse mass** $\langle m_T \rangle$ **dependence** (collective effects in small systems?)
- **Effect of strong short-lived resonances** computed for all hadrons
 - Decomposition in gaussian "core" source convoluted with non-gaussian tails due to resonances

The source is **determined given the pair** $< m_T >$:

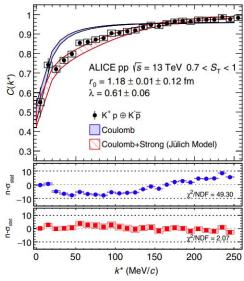

p-
$$\Omega$$
: $\langle m_{\rm T} \rangle$ = 2.2 GeV/ $c \Rightarrow r_{\rm core}$ = 0.86 ± 0.06 fm

"Search for a common baryon source in high-multiplicity pp collisions at the LHC", ALICE Coll., Phys. Lett. B811, 10, 135849 (2020)

K-p correlations: The KN interaction

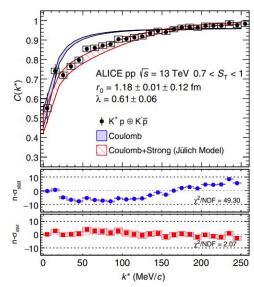

K-p correlations: The KN interaction

- K⁺p interaction repulsive and well established
- K⁻p features a strong attraction
 - \circ appearance of the $\Lambda(1405)$ below threshold
 - ο Λ (1405): antiKN- $\Sigma \pi$ molecular state
- K⁻p scattering data and kaonic hydrogen data used to constrain the amplitude below threshold

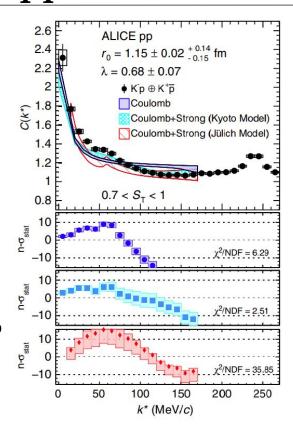


K-p correlations: The KN interaction

- K⁺p interaction repulsive and well established
- K⁻p features a strong attraction
 - \circ appearance of the $\Lambda(1405)$ below threshold
 - ο Λ (1405): antiKN- $\Sigma \pi$ molecular state
- K⁻p scattering data and kaonic hydrogen data used to constrain the amplitude below threshold

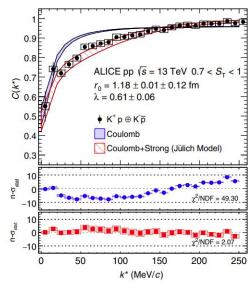

"Scattering Studies with Low-Energy Kaon-Proton Femtoscopy in Proton-Proton Collisions at the LHC", ALICE Coll. Phys. Rev. Lett. 124 (2020) 092301

- K⁺-p correlation used as a benchmark to study K⁻-p
- $S_T > 0.7$ selection removes mini-jet background

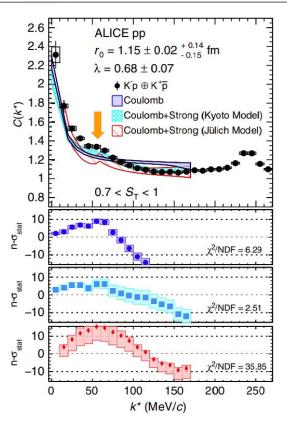

Jülich meson exchange model: Eur. Phys. J. A47, 18 (2011)

"Scattering Studies with Low-Energy Kaon-Proton Femtoscopy in Proton-Proton Collisions at the LHC", ALICE Coll, Phys. Rev. Lett. 124 (2020) 092301

- K⁺-p correlation used as a benchmark to study K⁻-p
- $S_{T} > 0.7$ selection removes mini-jet background


Jülich meson exchange model: Eur. Phys. J. A47, 18 (2011)

Coulomb potential only


Coulomb + Chiral Kyoto model
Phys. Rev. C93 no. 1, 015201 (2016)
Coulomb + Jülich meson exchange model
Nucl. Phys. A 981 (2019)

"Scattering Studies with Low-Energy Kaon-Proton Femtoscopy in Proton-Proton Collisions at the LHC", ALICE Coll, Phys. Rev. Lett. 124 (2020) 092301

- K⁺-p correlation used as a benchmark to study K⁻-p
- $S_{T} > 0.7$ selection removes mini-jet background

Jülich meson exchange model: Eur. Phys. J. A47, 18 (2011)

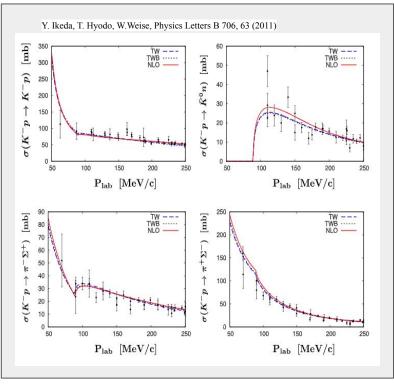
Coulomb potential only

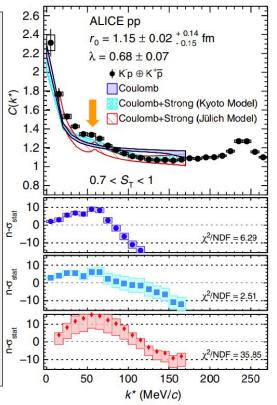
Coulomb + Chiral Kyoto model

Phys. Rev. C93 no. 1, 015201 (2016)

Coulomb + Jülich meson exchange model Nucl. Phys. A 981 (2019)

 \Rightarrow Bump close to the K⁰n threshold \rightarrow (58 MeV/c in CM frame)


First experimental evidence of the opening of the K⁰n isospin breaking channel


Coupled channel effect

$$M(K^-p) + 5\operatorname{MeV} = M(n\bar{K}^0)$$

$$\hline \begin{array}{c|c} \mathbf{n} & \mathbf{p} \\ \hline \bar{K}^0 & K^- \end{array}$$

"Scattering Studies with Low-Energy Kaon-Proton Femtoscopy in Proton-Proton Collisions at the LHC", ALICE Coll, Phys. Rev. Lett. 124 (2020) 092301

Coulomb potential only

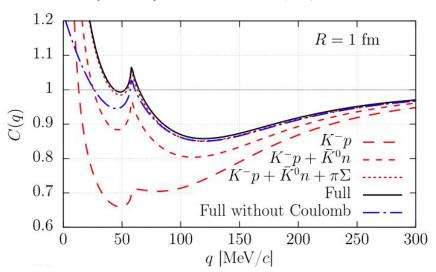
Coulomb + Chiral Kyoto model

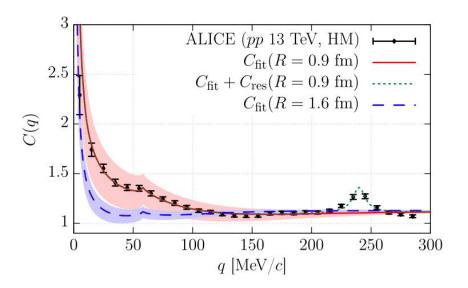
Phys. Rev. C93 no. 1, 015201 (2016)

Coulomb + Jülich meson exchange model Nucl. Phys. A 981 (2019)

⇒ Bump close to the K⁰n threshold→ (58 MeV/c in CM frame)

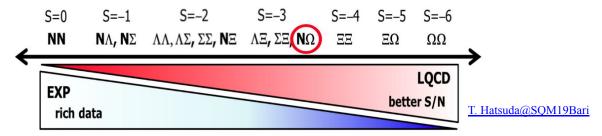
First experimental evidence of the opening of the K⁰n isospin breaking channel


Coupled channel effect


K-p correlations: model constraint

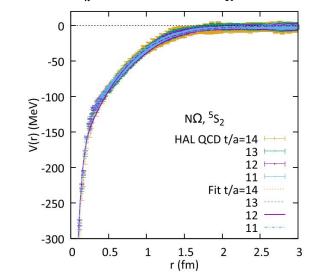
Update of the Kyoto model: **coupled-channel effects**

- Dependence on the system size


Y. Kamiya et al., Phys. Rev. Lett. 124, 132501 (2020)

Lattice QCD with S=-3

Lattice QCD with S=-3

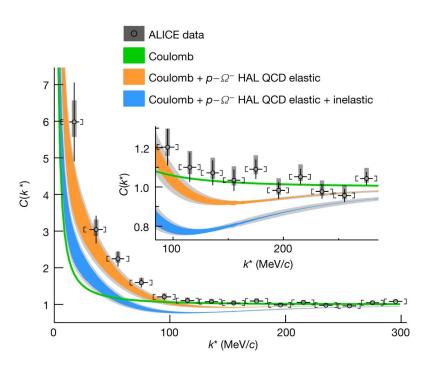

- **First principle calculations** in the strangeness sector:
 - Recent developments by lattice QCD at the physical point
- baryon-baryon sector:
 - o models constrained by **data with limited precision** (in contrast with N-N interactions)
- Difficulties to produce beams of hyperons
 - ⇒ <u>Correlation studies</u> can bring balance experiment-theory
 ALICE make use of high-multiplicity pp collisions with an **enhanced production of strangeness**

ALICE Coll, Nature Physics 13, 535 (2017)

$p-\Omega^{-}$ interaction

• HAL QCD p-Ω⁻ potential with physical quark masses T. Iritani et al., Phys. Lett. B 792 (2019) 284-289

$$o m_{\pi} = 146 \text{ MeV/c}^2, m_{K} = 525 \text{ MeV/c}^2$$


- \Rightarrow p- Ω attractive interaction at all distances
- No pauli blocking Same behaviour predicted by meson exchange models <u>T. Sekihara et al., Phys. Rev. C 98, 015205 (2018)</u>

• Predicts the formation of a \mathbf{p} - Ω - \mathbf{di} -baryon:

	HAL QCD: pΩ ⁻ binding energy
Strong interaction	1.5 MeV
Strong + Coulomb	2.5 MeV

$p-\Omega^{-}$ correlation function in pp at 13 TeV

"Unveiling the strong interaction among hadrons at the LHC", ALICE Coll., Nature 588, 232 (2020)

$p-\Omega^{-}$ correlation function in pp at 13 TeV

"Unveiling the strong interaction among hadrons at the LHC", ALICE Coll., Nature 588, 232 (2020)

- \Rightarrow Evidence of **attractive** strong **interaction** p- Ω system
 - $p-\Omega^-$ correlation function enhanced with respect to $p-\Lambda$, $p-\Xi^-$
- ⇒ The correlation function in pp collisions at the LHC sensitive to small differences among the interaction potentials (very small sources samples short distances)
- \Rightarrow Precise p- Ω experimental correlation function provide **first constraint for lattice QCD** calculations:
 - Inelastic channels not accounted for quantitatively within the lattice ⇒ two extreme assumptions
- \Rightarrow The **data do not follow the depletion** in the correlation function expected due to the p- Ω bound states:
 - Dependence on the system size

Outlook

- The LHC provides precise testing of the hadron-hadron interaction at distances lower than 1 fm.
- Correlation data complements other approaches.
 - o For some channels (multi-strange particles) constitute the only precise data
- First principle calculations of interactions involving hyperons can be tested.
 - o Necessary to compute reliable Equations of State and study the existence of strange di-baryons.

• Upcoming LHC data taking will provide the possibility of carrying out new and differential studies

and investigate 3-body interactions.

