Single-particle spectral function of the Λ -hyperon in finite nuclei

Isaac Vidaña, INFN Catania

Fundamental Physics at the Strangeness Frontier at DAFNE February 25th-26th 2021

Purpose

- ✓ Calculation of finite nuclei A spectral function
 - ♦ From its self-energy derived within a perturbative many-body approach

Results for the chiral potentials in collaboration with Johann Haidenbauer

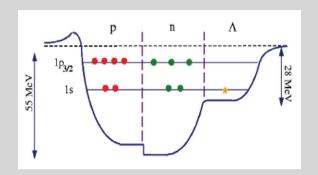
For details see:

I.V., NPA 958, 48 (2017)

J. Haidenbauer & I.V., EPJA 56, 55 (2020)

Mean field picture and Correlations

♦ Most of the theoretical descriptions of single Λ-hypernuclei rely on the validity of the mean field picture

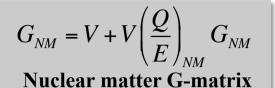


- **♦ Correlations induced by the YN interaction** can, however, substantially change this picture and, therefore, **should not be ignored**
- \diamond The knowledge of the single-particle spectral function of the Λ in finite nuclei is fundamental to determine:
 - ✓ To which extent the mean field description of hypernuclei is valid
 - ✓ To describe properly the cross section of different production mechanisms of hypernuclei

$$d\sigma_{A} \propto \int d\vec{p}_{N} dE_{N} d\sigma S_{N} (\vec{p}_{N}, E_{N}) S_{\Lambda} (\vec{p}_{\Lambda}, E_{\Lambda})$$

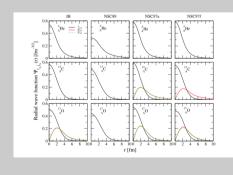
♦ Information on the Λ spectral function can be obtained from a combined analysis of data provided by e.g., (e,e'K⁺) reactions or other experiments with theoretical calculations

Scheme of the Calculation

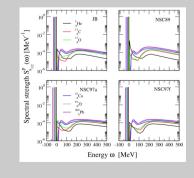


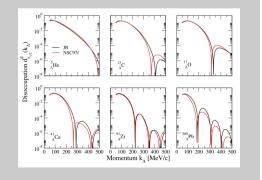
Finite nuclei G-matrix

A irreducible self-energy in finite nuclei



Finite nuclei Λ spectral function & disoccupation





Finite nuclei hyperon-nucleon G-matrix

- Finite nuclei G-matrix
- Nuclear matter G-matrix

$$G_{FN} = V + V \left(\frac{Q}{E}\right)_{FN} G_{FN}$$

$$G_{FN} = V + V \left(\frac{Q}{E}\right)_{FN} G_{FN}$$
 $G_{NM} = V + V \left(\frac{Q}{E}\right)_{NM} G_{NM}$

Eliminating V:

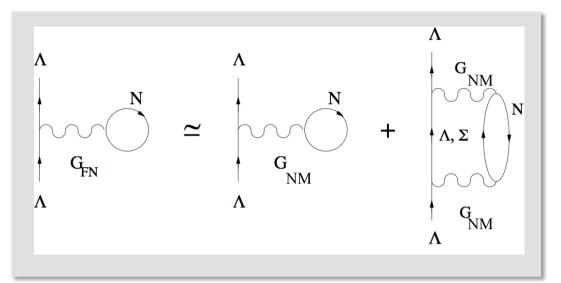
$$G_{FN} = G_{NM} + G_{NM} \left[\left(\frac{Q}{E} \right)_{FN} - \left(\frac{Q}{E} \right)_{NM} \right] G_{FN}$$

Truncating the expansion up second order:

$$G_{FN} \approx G_{NM} + G_{NM} \left[\left(\frac{Q}{E} \right)_{FN} - \left(\frac{Q}{E} \right)_{NM} \right] G_{NM}$$

Finite nucleus Λ self-energy in the BHF approximation

Using G_{FN} as an effective YN interaction, the finite nucleus Λ self-energy is given as sum of a 1st order term & a 2p1h correction



1st order term

$$\begin{array}{c|c}
\Lambda \\
\hline
 & N \\
G \\
NM \\
\Lambda
\end{array}$$

$$\mathcal{V}_{1}(k_{\Lambda}, k'_{\Lambda}, l_{\Lambda}, j_{\Lambda}) = \frac{1}{2j_{\Lambda} + 1} \sum_{\mathcal{J}} \sum_{n_{h}l_{h}j_{h}t_{z_{h}}} (2\mathcal{J} + 1)$$

$$\times \langle (k'_{\Lambda}l_{\Lambda}j_{\Lambda})(n_{h}l_{h}j_{h}t_{z_{h}})\mathcal{J}|G|(k_{\Lambda}l_{\Lambda}j_{\Lambda})(n_{h}l_{h}j_{h}t_{z_{h}})\mathcal{J}\rangle$$

This contribution is real & energy-independent

N.B. most of the effort is on the basis transformation $|(k_{\Lambda}l_{\Lambda}j_{\Lambda})(n_{h}l_{h}j_{h}t_{z_{h}})J\rangle \rightarrow |KLqLSJTM_{T}\rangle$

 $\begin{array}{c}
\Lambda \\
G \\
NM
\end{array}$ $\left[\left(\frac{Q}{E}\right)_{FN} - \left(\frac{Q}{E}\right)_{NM}\right]$ $\Lambda \\
\Lambda \\
NM$

This contribution is the sum of two terms:

• The first, due to the piece $G_{NM}(Q/E)_{FN}G_{NM}$, gives rise to an imaginary energy-dependent part in the Λ self-energy

$$\mathcal{W}_{2p1h}(k_{\Lambda}, k'_{\Lambda}, l_{\Lambda}, j_{\Lambda}, \omega)$$

$$= -\frac{\pi}{2j_{\Lambda} + 1} \sum_{n_{h}l_{h}j_{h}t_{z_{h}}} \sum_{\mathcal{L}LSJ\mathcal{J}} \sum_{Y' = \Lambda\Sigma} \int dq q^{2} \int dK K^{2}(2\mathcal{J} + 1)$$

$$\times \langle (k'_{\Lambda}l_{\Lambda}j_{\Lambda})(n_{h}l_{h}j_{h}t_{z_{h}})\mathcal{J}|G|K\mathcal{L}qLSJ\mathcal{J}TM_{T}\rangle$$

$$\times \langle K\mathcal{L}qLSJ\mathcal{J}TM_{T}|G|(k_{\Lambda}l_{\Lambda}j_{\Lambda})(n_{h}l_{h}j_{h}t_{z_{h}})\mathcal{J}\rangle$$

$$\times \delta \left(\omega + \varepsilon_{h} - \frac{\hbar^{2}K^{2}}{2(m_{N} + m_{Y'})} - \frac{\hbar^{2}q^{2}(m_{N} + m_{Y'})}{2m_{N}m_{Y'}} - m_{Y'} + m_{\Lambda}\right)$$

From which can be obtained the contribution to the real part of the selfenergy through a dispersion relation

$$\mathcal{V}_{2p1h}^{(1)}(k_{\Lambda},k_{\Lambda}',l_{\Lambda},j_{\Lambda},\omega) = \frac{1}{\pi} \mathcal{P} \int_{-\infty}^{\infty} d\omega' \frac{\mathcal{W}_{2p1h}(k_{\Lambda},k_{\Lambda}',l_{\Lambda},j_{\Lambda},\omega')}{\omega'-\omega}$$

• The second, due to the piece $G_{NM}(Q/E)_{NM}G_{NM}$, gives also a real & energy-independent contribution to the Λ self-energy and avoids double counting of Y'N states

$$\begin{aligned} \mathcal{V}_{2p1h}^{(2)}(k_{\Lambda}, k_{\Lambda}', l_{\Lambda}, j_{\Lambda}) \\ &= \frac{1}{2j_{\Lambda} + 1} \sum_{n_h l_h j_h t_{z_h}} \sum_{\mathcal{L}LSJ\mathcal{J}} \sum_{Y' = \Lambda \Sigma} \int dq q^2 \int dK K^2 (2\mathcal{J} + 1) \\ &\times \langle (k_{\Lambda}' l_{\Lambda} j_{\Lambda}) (n_h l_h j_h t_{z_h}) \mathcal{J} | G | K \mathcal{L}q LSJ \mathcal{J}T M_T \rangle \\ &\times \langle K \mathcal{L}q LSJ \mathcal{J}T M_T | G | (k_{\Lambda} l_{\Lambda} j_{\Lambda}) (n_h l_h j_h t_{z_h}) \mathcal{J} \rangle \\ &\times Q_{Y'N} \left(\Omega - \frac{\hbar^2 K^2}{2(m_N + m_{Y'})} - \frac{\hbar^2 q^2 (m_N + m_{Y'})}{2m_N m_{Y'}} - m_{Y'} + m_{\Lambda} \right)^{-1} \end{aligned}$$

Summarizing, in the BHF approximation the finite nucleus Λ self-energy is given by:

$$\Sigma_{l_{\Lambda}j_{\Lambda}}(k_{\Lambda},k'_{\Lambda},\omega) = \mathcal{V}_{l_{\Lambda}j_{\Lambda}}(k_{\Lambda},k'_{\Lambda},\omega) + i\mathcal{W}_{l_{\Lambda}j_{\Lambda}}(k_{\Lambda},k'_{\Lambda},\omega)$$

with

$$\mathcal{V}_{l_{\Lambda}j_{\Lambda}}(k_{\Lambda},k_{\Lambda}',\omega) = \mathcal{V}_{1}(k_{\Lambda},k_{\Lambda}',l_{\Lambda},j_{\Lambda}) + \mathcal{V}_{2p1h}^{(1)}(k_{\Lambda},k_{\Lambda}',l_{\Lambda},j_{\Lambda},\omega) - \mathcal{V}_{2p1h}^{(2)}(k_{\Lambda},k_{\Lambda}',l_{\Lambda},j_{\Lambda})$$

$$W_{l_{\Lambda}j_{\Lambda}}(k_{\Lambda},k'_{\Lambda},\omega)=W_{2p1h}(k_{\Lambda},k'_{\Lambda},l_{\Lambda},j_{\Lambda},\omega)$$

A self-energy in finite nuclei

s-wave state: He (black), C (red), O (green), Ca (blue), Zr (brown) & Pb (violet)

 $(\omega) \mid \psi > [MeV]$ Expectation value $< \psi \mid \Sigma_{s_{1,2}}$ NSC97c

NSC97e

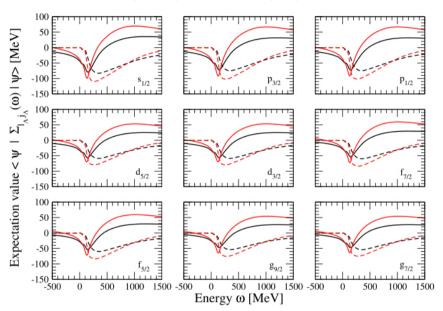
500

Energy ω [MeV]

500 1000 1500 -500

50 E NSC97d

s-, p-, d-, f- and g- wave states for Pb JB (black) & NSC89 (red)



- $|\text{Im} < \Psi | \Sigma | \Psi > |$ larger in Nijmegen models \rightarrow strong ω dependence of Re $< \Psi | \Sigma | \Psi > |$
- Im $\langle \Psi | \Sigma | \Psi \rangle \neq 0$ only for $\omega \geq 0$ & always negative

1500 -500

Im $\langle \Psi | \Sigma | \Psi \rangle$ behaves almost quadratically for energies close to $\omega = 0$

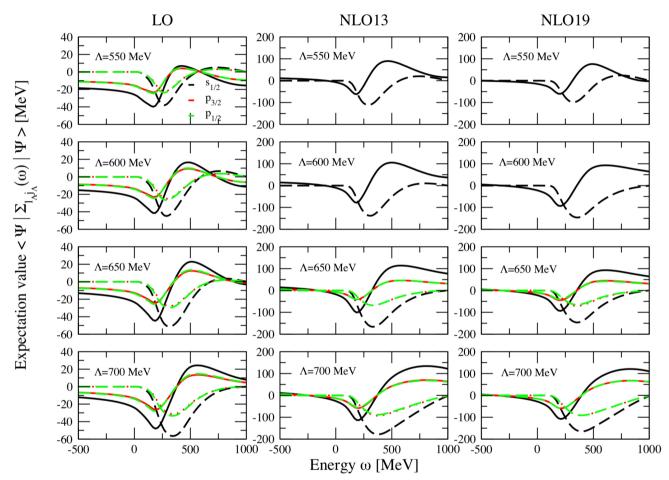
500

NSC97f

0

- Re $<\Psi |\Sigma|\Psi>$ attractive for $\omega < 0$ up to a given value of ω turning repulsive at high ω
- \Rightarrow Up to 500-600 MeV Re $<\Psi$ |Σ|Ψ> more attractive for heavier hypernuclei. At higher ω more repulsive than that of lighter ones

Λ self-energy in $^{17}{}_{\Lambda}$ O with chiral YN potentials



- ♦ In general similar qualitative behavior but:
 - \blacktriangleright Im $\langle \Psi | \Sigma | \Psi \rangle$ is not always negative for $\omega > 0$ with the lower cut-off
 - ightharpoonupRe $<\Psi |\Sigma|\Psi>$ slightly repulsive for very negatives $\omega < 0$ in the case of NLO

Λ single-particle bound states

 Λ s.p. bound states can be obtained using the real part of the Λ self-energy as an effective hyperon-nucleus potential in the Schroedinger equation

$$\sum_{i=1}^{N_{max}} \left[\frac{\hbar^2 k_i^2}{2m_{\Lambda}} + \mathcal{V}_{l_{\Lambda}j_{\Lambda}}(k_n, k_i, \omega = \varepsilon_{l_{\Lambda}j_{\Lambda}}) \right] \Psi_{il_{\Lambda}j_{\Lambda}m_{j_{\Lambda}}} = \varepsilon_{l_{\Lambda}j_{\Lambda}} \Psi_{nl_{\Lambda}j_{\Lambda}m_{j_{\Lambda}}}$$

solved by diagonalizing the Hamiltonian in a complete & orthonormal set of regular basis functions within a spherical box of radius R_{box}

$$\Phi_{nl_{\Lambda}j_{\Lambda}m_{j_{\Lambda}}}(\vec{r}) = \langle \vec{r} | k_{n}l_{\Lambda}j_{\Lambda}m_{j_{\Lambda}} \rangle = N_{nl_{\Lambda}}j_{l_{\Lambda}}(k_{n}r)\psi_{l_{\Lambda}j_{\Lambda}m_{j_{\Lambda}}}(\theta, \phi)$$

- N_{nlA} \longrightarrow normalization constant
- N_{max} \longrightarrow maximum number of basis states in the box
- $j_{j\Lambda}(k_n r)$ \longrightarrow Bessel functions for discrete momenta $(j_{j\Lambda}(k_n R_{box})=0)$
- $\psi_{l\Lambda j\Lambda mj\Lambda}(\theta,\phi)$ \longrightarrow spherical harmonics the including spin d.o.f.
- $\Psi_{nl\Lambda j\Lambda mj\Lambda} = \langle k_n l_\Lambda j_\Lambda m_{j\Lambda} | \Psi \rangle$ \longrightarrow projection of the state $|\Psi\rangle$ on the basis $|k_n l_\Lambda j_\Lambda m_{j\Lambda}\rangle$

N.B. a self-consistent procedure is required for each eigenvalue

Λ single-particle bound states: Energy (meson-exchange YN potentials)

Nuclei	$l_{\Lambda}j_{\Lambda}$	JB	J04	NSC89	NSC97a	NSC97b	NSC97c	NSC97d	NSC97e	NSC97f	Exp.
$^{5}_{\Lambda}$ He											(⁵ Λ He)
	$s_{1/2}$	-2.28	-5.89	-0.58	-3.16	-3.38	-3.94	-4.24	-4.20	-3.59	-3.12(2)
$^{13}_{\Lambda}\mathrm{C}$		Sec. 202									(¹³ _{\Lambda} C)
	$s_{1/2}$	-9.48	-18.94	-5.69	-11.46	-11.79	-12.76	-13.08	-12.82	-11.37	-11.69(12)
	$p_{3/2}$		-3.66		-0.24	-0.32	-0.63	-0.68	-0.54	-0.01	-0.8(3) (p)
	$p_{1/2}$		-4.07		-0.12	-0.14	-0.37	-0.35	-0.19		
$^{17}_{\Lambda}{ m O}$		Secretary to									(¹⁶ _{\Lambda} O)
	$s_{1/2}$	-11.83	-23.40	-7.39	-14.31	-14.65	-15.70	-15.99	-15.68	-14.02	-13.0(2)
	$p_{3/2}$	-0.87	-8.16		-2.57	-2.72	-3.24	-3.33	-3.10	-2.17	-2.5(2) (p)
	$p_{1/2}$	-1.06	-8.03		-2.16	-2.22	-2.61	-2.57	-2.30	-1.41	
$^{41}_{\Lambda}$ Ca											$\binom{40}{\Lambda}$ Ca)
	$s_{1/2}$	-19.60	-36.16	-15.04	-23.09	-23.42	-24.60	-24.74	-24.20	-21.96	-18.7(1.1)
	$p_{3/2}$	-9.64	-23.81	-6.92	-12.37	-12.57	-13.40	-13.35	-12.84	-11.09	-11.0(5) (p)
	$p_{1/2}$	-9.92	-23.78	-6.29	-12.10	-12.23	-12.95	-12.78	-12.22	-10.45	200000
	$d_{5/2}$	-0.70	-11.72		-2.80	-2.93	-3.47	-3.38	-3.00	-1.83	-1.0(5) (d)
	$d_{3/2}$	-1.01	-11.65		-2.43	-2.46	-2.85	-2.61	-2.18	-1.04	-
$^{91}_{\Lambda}\mathrm{Zr}$											(89 Y)
	$s_{1/2}$	-25.80	-46.30	-22.77	-31.38	-31.73	-33.05	-33.06	-32.33	-29.56	-23.6(5)
	$p_{3/2}$	-18.19	-37.73	-17.08	-23.92	-24.20	-25.28	-25.22	-24.58	-22.25	-17.7(6) (p)
	$p_{1/2}$	-18.30	-38.01	-16.68	-23.82	-24.06	-25.07	-24.92	-24.23	-21.88	
	$d_{5/2}$	-11.16	-28.35	-9.05	-14.41	-14.58	-15.36	-15.09	-14.42	-12.41	-10.9(6) (d)
	$d_{3/2}$	-11.17	-28.44	-8.49	-14.30	-14.40	-15.12	-14.77	-14.06	-11.99	
	$f_{7/2}$	-3.05	-18.45	-1.56	-5.46	-5.52	-6.03	-5.59	-4.93	-3.27	-3.7(6) (f)
	$f_{5/2}$	-2.99	-18.76	-1.00	-5.28	-5.26	-5.69	-5.20	-4.52	-2.86	
$^{209}_{\Lambda} \text{Pb}$											(²⁰⁸ _A Pb)
	$s_{1/2}$	-31.36	-59.95	-29.52	-38.85	-39.23	-40.63	-40.44	-39.50	-39.30	-26.9(8)0
	$p_{3/2}$	-27.13	-55.21	-26.01	-33.49	-33.91	-35.13	-34.80	-33.86	-31.03	-22.5(6) (p)
	$p_{1/2}$	-27.18	-55.40	-25.72	-33.38	-33.78	-34.94	-34.54	-33.56	-30.72	
	$d_{5/2}$	-21.70	-45.08	-17.85	-23.23	-23.54	-24.38	-23.79	-22.858	-20.60	-17.4(7) (d)
	$d_{3/2}$	-21.77	-45.07	-17.65	-23.17	-23.45	-24.27	-23.68	-22.75	-20.51	
	$f_{7/2}$	-13.00	-37.15	-9.67	-15.38	-15.43	-16.04	-15.05	-13.81	-10.98	-12.3(6) (f)
	$f_{5/2}$	-13.13	-37.16	-9.31	-15.35	-15.33	-15.90	-14.87	-13.61	-10.76	
	$g_{9/2}$	-8.14	-29.91	-5.27	-10.07	-10.14	-10.68	-9.80	-8.71	-6.28	-7.2(6) (g)
	$g_{7/2}$	-8.26	-30.16	-4.80	-10.01	-10.00	-10.46	-9.49	-8.37	-5.91	

- ◆ Qualitatively good a greement with experiment, except for J04 (unrealistic overbinding)
- ♦ Zr & Pb overbound also for NSC97a-f models. These models predict $U_{\Lambda}(0) \sim -40$ MeV compared with -30 MeV extrapolated from data
- ♦ Splitting of p-, d-, fand g-waves of ~ few tenths of MeV due to the small spin-orbit strength of YN interaction

Λ single-particle bound states: Energy (chiral YN potentials)

			LO				NLO13					NLO19			Exp.
4 (MeV)	550	600	650	700	500	550	600	650	700	500	550	600	650	700	
$^{5}_{\Lambda}\mathrm{He}_{s_{1/2}}$	-4.04	-3.32	-3.06	-3.26	-0.73	-0.15	-0.63	-2.36	-4.90	-2.16	-1.36	-1.77	-3.42	-5.63	$^{5}_{\Lambda}$ He $-3.12(2$
13 C				2											¹³ C
$s_{1/2}$	-12.33	-11.01	-10.54	-10.93	-4.44	-2.24	-3.72	-8.91	-13.40	-8.91	-6.42	-7.22	-10.81	-14.98	-11.69(1
$p_{3/2}$	-	-	-	-	-	-	-	-	-1.22	_	_	-	-0.12	-1.76	-0.8(3)
$p_{1/2}$	-1.11	-0.58	-0.45	-0.72	_	-	-	7-	-0.97	_		7-	-	-1.40	
¹⁷ ΛO				,											¹⁶ O
81/2	-16.12	-14.64	-14.13	-14.65	-6.07	-3.46	-5.35	-10.51	-16.37	-11.46	-8.61	-9.55	-13.60	-18.18	-13.0(
$p_{3/2}$	-3.16	-2.29	-2.02	-2.30	_	_	-	-1.22	-4.04	-1.26	-0.14	-0.53	-2.40	-4.89	-2.5(2)
$p_{1/2}$	-3.47	-2.64	-2.41	-2.76	-	-	-	-0.66	-3.31	-0.51	-	-	-1.69	-4.10	
⁴¹ _A Ca				:											⁴⁰ _Λ Ca
$s_{1/2}$	-24.83	-23.17	-22.66	-23.26	-12.37	-8.78	-11.24	-17.56	-24.36	-19.51	-15.86	-16.80	-21.30	-26.47	-18.7(1
$p_{3/2}$	-14.50	-13.05	-12.54	-12.95	-4.95	-2.54	-3.98	-8.82	-13.43	-9.91	-6.93	-7.48	-11.04	-15.06	-11.0(5)
$p_{1/2}$	-14.70	-13.28	-12.81	-13.25	-4.37	-2.08	-3.50	-7.73	-12.87	-9.13	-6.23	-6.82	-10.42	-14.47	
$d_{5/2}$	-4.61	-3.45	-3.01	-3.23	-	-	-	-0.40	-3.59	-1.47	-	-	-1.99	-4.67	-1.0(5)
$d_{3/2}$	-6.91	-5.64	-5.18	-5.51	-	-	-	-0.50	-4.02	-0.56	-	-	-1.20	-3.84	
$^{91}_{\Lambda}{ m Zr}$															89 Y
$s_{1/2}$	-31.27	-29.22	-28.48	-29.11	-19.36	-14.66	-17.83	-25.10	-32.50	-27.72	-22.57	-23.19	-28.94	-34.61	-23.6(
$p_{3/2}$	-24.31	-22.43	-21.72	-22.22	-14.24	-10.59	-13.27	-19.27	-25.45	-20.59	-16.24	-16.94	-22.05	-26.96	-17.7(6)
$p_{1/2}$	-24.80	-22.96	-22.28	-22.80	-13.95	-10.39	-13.05	-19.07	-25.31	-20.45	-15.96	-16.67	-21.86	-26.82	
$d_{5/2}$	-16.60	-14.79	-14.09	-14.30	-6.21	-3.33	-5.24	-10.30	-15.27	-11.92	-8.10	-8.44	-12.68	-16.78	-10.9(6)
$d_{3/2}$	-17.57	-15.80	-15.06	-15.40	-5.80	-2.98	-4.88	-9.70	-14.97	-11.65	-7.61	-7.98	-12.27	-16.40	1 9 11 70
$f_{7/2}$	-8.69	-7.04	-6.25	-6.36	-	_	-	-1.68	-5.63	-4.04	-0.98	-0.89	-3.97	-7.04	-3.7(6)
$f_{5/2}$	-10.17	-8.58	-7.85	-8.04		-		-1.28	-5.23	-3.59	-0.33	-0.28	-3.39	-6.54	
²⁰⁹ Pb															²⁰⁸ Pt
$s_{1/2}$	-40.97	-38.18	-36.91	-37.32	-25.75	-21.41	-25.09	-32.28	-39.51	-36.28	-29.50	-29.60	-35.84	-41.58	-26.9(
$p_{3/2}$	-37.62	-34.85	-33.42	-33.50	-21.88	-15.77	-18.33	-25.13	-31.83	-33.72	-26.73	-25.27	-30.26	-34.71	-22.5(6)
$p_{1/2}$	-37.81	-35.05	-33.62	-33.69	-21.55	-15.53	-18.14	-25.00	-31.74	-33.58	-26.57	-25.13	-30.17	-34.64	
$d_{5/2}$	-29.57	-26.94	-25.45	-25.29	-14.47	-8.79	-9.96	-14.78	-19.98	-25.49	-19.28	-16.84	-20.08	-23.15	-17.4(7)
$d_{3/2}$	-30.03	-27.44	-26.00	-25.87	-14.35	-8.71	-9.83	-14.62	-19.83	-25.29	-18.98	-16.57	-19.85	-22.97	
$f_{7/2}$	-22.85	-20.33	-18.92	-18.79	-4.46	_	_	-5.91	-12.57	-16.23	-10.15	-7.91	-11.90	-15.80	-12.3(6)
$f_{5/2}$	-23.45	-20.95	-19.57	-19.48	-4.42	-	-	-5.60	-12.24	-15.96	-9.70	-7.47	-11.47	-15.38	= 0(-)
$g_{9/2}$	-20.33	-17.75	-16.23	-15.96	-1.87	_	-	-3.23	-9.21	-13.72	-7.55	-5.18	-8.92	-12.32	-7.2(6)
$g_{7/2}$	-21.47	-18.96	-17.50	-17.29	-1.38	_	_	-2.91	-8.94	-13.38	-7.03	-4.69	-8.53	-12.00	

♦ LO

Tendency for overbinding

♦ NLO13

Predict less bound states. Underbinds most of the considered hypernuclei

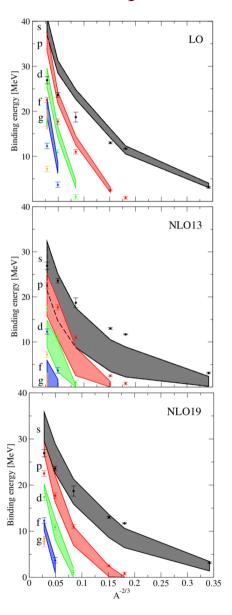
♦ NLO19

Qualitatively good agreement considering the uncertainty of the regulator dependence

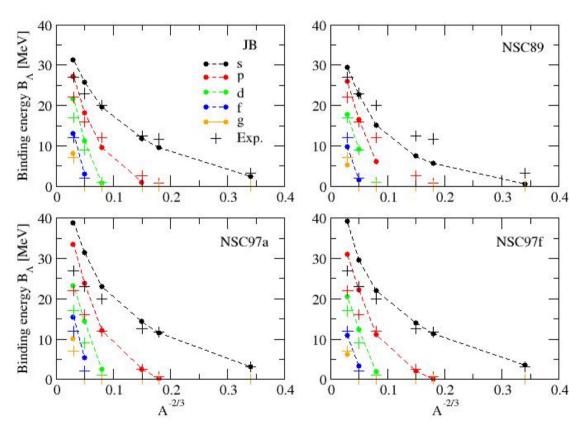
♦ Small splitting of p-, d-, f- and g-waves as in the case of meson-exchange potentials
J. Haidenbauer & I.V., EPJA 56, 55 (2020)

Λ Binding Energy

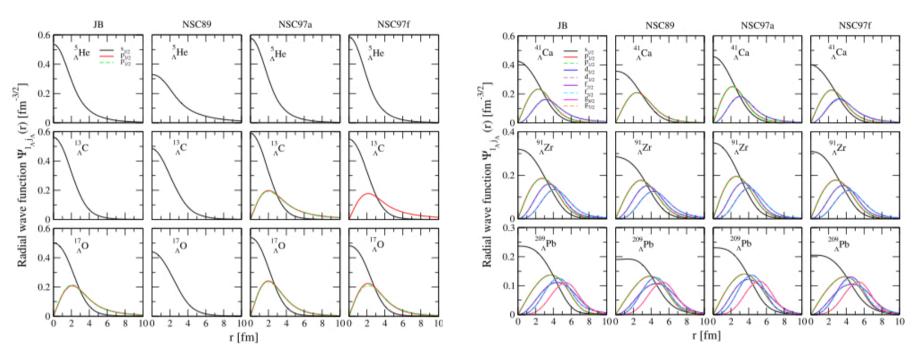
YN chiral potentials



YN meson-exchange potentials

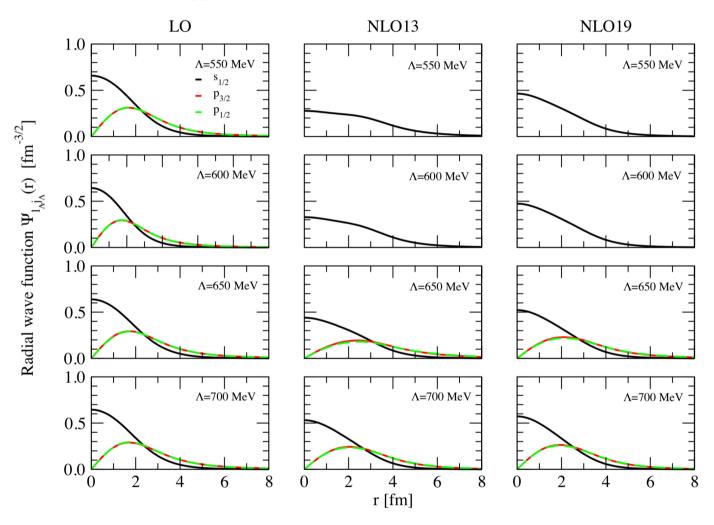


Λ single-particle bound states: Radial Wave Function



- $\Psi_{s1/2}$ state more and more spread when going from light to heavy hypernuclei probability of finding the Λ at the center of the hypernuclei ($|\Psi_{s1/2}(r=0)|^2$) decreases.
- \diamond Only He falls out this pattern because the energy of the $s_{1/2}$ state is too low, therefore, resulting in a very extended wave function
- ♦ The small spin-orbit splitting of the p-, d-, f- and g-wave states cannot be resolved in the corresponding wave functions

Λ single-particle bound states: Radial Wave Function $^{17}{}_{\Lambda}{\rm O}$ with chiral YN potentials



♦ s- and p-wave states more extended for the NLO pontentials.

General Remarks on the s.p. Spectral Function

Single-particle Green's function (Lehmann representation):

$$g_{\alpha\beta}(\omega) = \int_{E_0^{N+1} - E_0^N}^{\infty} d\omega' \frac{S_{\alpha\beta}^p(\omega')}{\omega - \omega' + i\eta} + \int_{-\infty}^{E_0^N - E_0^{N-1}} d\omega' \frac{S_{\alpha\beta}^h(\omega')}{\omega - \omega' - i\eta}$$
 Describes propagation of a particle or a hole added to a N-particle system

Describes propagation of a

being

$$S^{p}_{\alpha\beta}(\omega) = \sum_{m} \langle \Psi^{N}_{0} | \hat{c}_{\alpha} | \Psi^{N+1}_{m} \rangle \langle \Psi^{N+1}_{m} | \hat{c}^{\dagger}_{\beta} | \Psi^{N}_{0} \rangle \delta(\omega - (E^{N+1}_{m} - E^{N}_{0})), \ \omega > E^{N+1}_{0} - E^{N}_{0}$$

$$S_{\alpha\beta}^{h}(\omega) = \mp \sum_{n} \langle \Psi_{0}^{N} | \hat{c}_{\beta}^{\dagger} | \Psi_{n}^{N-1} \rangle \langle \Psi_{n}^{N-1} | \hat{c}_{\alpha} | \Psi_{0}^{N} \rangle \delta(\omega - (E_{0}^{N} - E_{n}^{N-1})), \ \omega < E_{0}^{N} - E_{0}^{N-1}$$

Particle & hole part of the s.p. spectral function

Diagonal parts $S_{\alpha\alpha}^{p}$ & $S_{\alpha\alpha}^{h}$ = probability density of adding or removing a particle to the ground state of the N-particle system & finding the resulting N+1 (N-1) one with energy ω -(E^{N+1}₀-E^N₀) or (E^N₀-E^{N-1}₀)- ω

The case of the single-particle Λ spectral function

In the case of a Λ hyperon that is added to a pure nucleonic system (e.g., infinite nuclear matter or an ordinary nuclei), it is clear, that since there are no other Λ 's in the N-particle pure nucleonic system, the Λ can only be added to it and, therefore, the hole part of its spectral function is zero

The Lehmann representation of the single- Λ propagator is simply:

$$g_{\alpha\beta}^{\Lambda}(\omega) = \int_{E_0^{N+\Lambda} - E_0^N}^{\infty} d\omega' \frac{S_{\alpha\beta}^{\Lambda p}(\omega')}{\omega - \omega' + i\eta}$$

In any production mechanism of single- Λ hypernuclei a Λ can be formed in a bound or in a scattering state \longrightarrow the Λ particle spectral function is sum of a discrete & a continuum contribution

♦ Discrete contribution

$$S_{l_{\Lambda}j_{\Lambda}}^{p(d)}(k_{n},\omega)=Z_{l_{\Lambda}j_{\Lambda}}|\langle k_{n}l_{\Lambda}j_{\Lambda}m_{j_{\Lambda}}|\Psi\rangle|^{2}\delta(\omega-\varepsilon_{l_{\Lambda}j_{\Lambda}})$$

is a delta function located at the energy of the s.p. bound state with strength given by the Z-factor

$$Z_{l_{\Lambda}j_{\Lambda}} = \left(1 - \frac{\partial \langle \Psi | \Sigma_{l_{\Lambda}j_{\Lambda}}(\omega) | \Psi \rangle}{\partial \omega} \Big|_{\omega = \varepsilon_{l_{\Lambda}j_{\Lambda}}}\right)^{-1}$$

The discrete contribution to the total Λ spectral strength is obtained by summing over all discrete momenta k_n

$$S_{l_{\Lambda}j_{\Lambda}}^{p(d)}(\omega) = Z_{l_{\Lambda}j_{\Lambda}}\delta(\omega - \varepsilon_{l_{\Lambda}j_{\Lambda}})$$

♦ Continuum contribution

$$S_{l_{\Lambda}j_{\Lambda}}^{p(c)}(k_{\Lambda},k_{\Lambda}',\omega) = \lim_{\eta \to 0^{+}} \frac{i}{2\pi} \left(g_{l_{\Lambda}j_{\Lambda}}^{\Lambda}(k_{\Lambda},k_{\Lambda}',\omega+i\eta) - g_{l_{\Lambda}j_{\Lambda}}^{\Lambda}(k_{\Lambda},k_{\Lambda}',\omega-i\eta) \right) \xrightarrow{\text{Using}} -\frac{1}{\pi} \text{Im} \, g_{l_{\Lambda}j_{\Lambda}}^{\Lambda}(k_{\Lambda},k_{\Lambda}',\omega)$$

where the single- Λ propagator can be derived from the following form of the Dyson equation

$$g^{\Lambda}_{l_{\Lambda}j_{\Lambda}}(k_{\Lambda},k'_{\Lambda},\omega) = \frac{\delta(k_{\Lambda}-k'_{\Lambda})}{k_{\Lambda}^2}g^{(0)}_{\Lambda}(k_{\Lambda},\omega) + g^{(0)}_{\Lambda}(k_{\Lambda},\omega)\Sigma^{red}_{l_{\Lambda}j_{\Lambda}}(k_{\Lambda},k'_{\Lambda},\omega)g^{(0)}_{\Lambda}(k'_{\Lambda},\omega)$$

Free s.p. propagator

Reducible Λ self-energy

$$\Sigma^{red}_{l_{\Lambda}j_{\Lambda}}(k_{\Lambda},k_{\Lambda}',\omega) = \Sigma_{l_{\Lambda}j_{\Lambda}}(k_{\Lambda},k_{\Lambda}',\omega) + \int dq_{\Lambda}q_{\Lambda}^{2}\Sigma_{l_{\Lambda}j_{\Lambda}}(k_{\Lambda},q_{\Lambda},\omega)g_{\Lambda}^{(0)}(q_{\Lambda},\omega)\Sigma^{red}_{l_{\Lambda}j_{\Lambda}}(q_{\Lambda},k_{\Lambda}',\omega)$$

Due to the delta function in the Dyson equation is numerically more convenient to obtain the continuum contribution of the Λ spectral function in coordinate space

$$S_{l_{\Lambda}j_{\Lambda}}^{p(c)}(r_{\Lambda},r_{\Lambda}',\omega) = \frac{2}{\pi} \int\limits_{0}^{\infty} dk_{\Lambda} k_{\Lambda}^{2} \int\limits_{0}^{\infty} dk_{\Lambda}' k_{\Lambda}'^{2} j_{l_{\Lambda}}(k_{\Lambda}r_{\Lambda}) S_{l_{\Lambda}j_{\Lambda}}^{p(c)}(k_{\Lambda},k_{\Lambda}',\omega) j_{l_{\Lambda}}(k_{\Lambda}'r_{\Lambda}')$$

The continuum contribution to the total Λ spectral strength is obtained from the following double folding of the spectral function

$$S_{l_{\Lambda}j_{\Lambda}}^{p(c)}(\omega) = \int_{0}^{\infty} dr_{\Lambda} r_{\Lambda}^{2} \int_{0}^{\infty} dr'_{\Lambda} r'_{\Lambda}^{2} \Psi_{l_{\Lambda}j_{\Lambda}}(r_{\Lambda}) S_{l_{\Lambda}j_{\Lambda}}^{p(c)}(r_{\Lambda}, r'_{\Lambda}, \omega) \Psi_{l_{\Lambda}j_{\Lambda}}(r'_{\Lambda})$$

where

$$\begin{split} S_{l_{\Lambda}j_{\Lambda}}^{p(c)}(r_{\Lambda},r_{\Lambda}',\omega) &= \frac{2}{\pi} \frac{m_{\Lambda}k_{0}}{\hbar^{2}} j_{l_{\Lambda}}(k_{0}r_{\Lambda}) j_{l_{\Lambda}}(k_{0}r_{\Lambda}') \\ &+ 2 \left(\frac{m_{\Lambda}k_{0}}{\hbar^{2}} \right)^{2} j_{l_{\Lambda}}(k_{0}r_{\Lambda}) j_{l_{\Lambda}}(k_{0}r_{\Lambda}') \operatorname{Im} \Sigma_{l_{\Lambda}j_{\Lambda}}^{red}(k_{0},k_{0},\omega) \\ &+ \frac{2}{\pi} \frac{m_{\Lambda}k_{0}}{\hbar^{2}} j_{l_{\Lambda}}(k_{0}r_{\Lambda}) \mathcal{P} \int_{0}^{\infty} dk_{\Lambda}' k_{\Lambda}'^{2} \frac{j_{l_{\Lambda}}(k_{\Lambda}'r_{\Lambda}') \operatorname{Re} \Sigma_{l_{\Lambda}j_{\Lambda}}^{red}(k_{0},k_{\Lambda}',\omega)}{\omega - \frac{\hbar^{2}k_{\Lambda}'^{2}}{2m_{\Lambda}}} \\ &+ \frac{2}{\pi} \frac{m_{\Lambda}k_{0}}{\hbar^{2}} j_{l_{\Lambda}}(k_{0}r_{\Lambda}') \mathcal{P} \int_{0}^{\infty} dk_{\Lambda}k_{\Lambda}^{2} \frac{j_{l_{\Lambda}}(k_{\Lambda}r_{\Lambda}) \operatorname{Re} \Sigma_{l_{\Lambda}j_{\Lambda}}^{red}(k_{\Lambda},k_{0},\omega)}{\omega - \frac{\hbar^{2}k_{\Lambda}'^{2}}{2m_{\Lambda}}} \\ &- \frac{2}{\pi^{2}} \mathcal{P} \int_{0}^{\infty} dk_{\Lambda}k_{\Lambda}^{2} \frac{j_{l_{\Lambda}}(k_{\Lambda}r_{\Lambda})}{\omega - \frac{\hbar^{2}k_{\Lambda}'^{2}}{2m_{\Lambda}}} \mathcal{P} \int_{0}^{\infty} dk_{\Lambda}' k_{\Lambda}'^{2} \frac{j_{l_{\Lambda}}(k_{\Lambda}'r_{\Lambda}') \operatorname{Im} \Sigma_{l_{\Lambda}j_{\Lambda}}^{red}(k_{\Lambda},k_{\Lambda}',\omega)}{\omega - \frac{\hbar^{2}k_{\Lambda}'^{2}}{2m_{\Lambda}}} \end{split}$$

Total A spectral strength

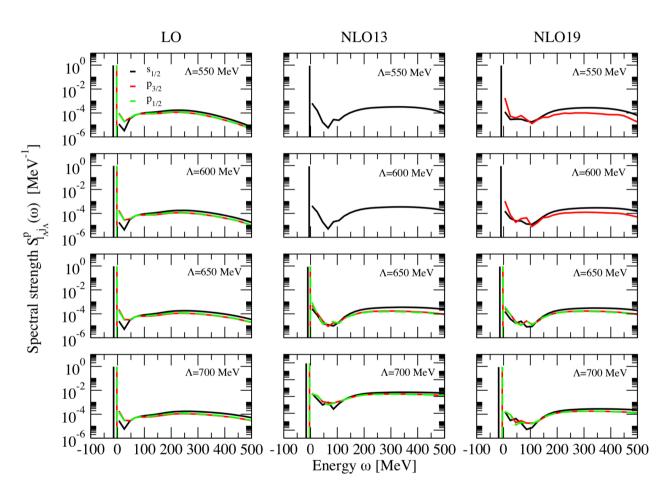
$$S_{l_{\Lambda}j_{\Lambda}}^{p}(\omega) = S_{l_{\Lambda}j_{\Lambda}}^{p(d)}(\omega) + S_{l_{\Lambda}j_{\Lambda}}^{p(c)}(\omega)$$

Λ Spectral Strength: Results

s-wave state: He (black), C (red), O (green), s-, p-, d-, f- and g- wave states (NSC97f) Ca (blue), Zr (brown) & Pb (violet) 10^{0} ⁵He NSC89 10⁻² Spectral strength $S^p_{l_{\lambda}j_{\lambda}}(\omega)$ [MeV⁻¹] Spectral strength $S_{_{S_{1/2}}}^{p}(\omega)$ [MeV⁻¹] 10⁻² 10^{-4} NSC97f 10⁻² 10^{-4} 100 200 300 400 500 Energy ω [MeV] Energy ω [MeV]

- ♦ Discrete contribution: delta function located at the energy of the s.p. bound state with strength given by the Z-factor. Decreases when moving from light to heavy nuclei → ΛN correlations more important when the size of the nuclear core increases
- \diamondsuit Continuum contribution: strength spread over all positive energies. Structure for ω < 100 MeV reflects the behavior of self-energy. Monotonically reduction for ω > 200

A Spectral Strength: Results 17 O with chiral YN potentials



♦ Results qualitatively similar to those obtained with meson-exchange potentials

AN correlations: Z-factor

$$Z_{l_{\Lambda}j_{\Lambda}} = \left(1 - \frac{\partial \langle \Psi | \Sigma_{l_{\Lambda}j_{\Lambda}}(\omega) | \Psi \rangle}{\partial \omega} \Big|_{\omega = \varepsilon_{l_{\Lambda}j_{\Lambda}}}\right)^{-1}$$

Z measures the importance of correlations. The smaller the value of Z the more important are the correlations of the system

Nuclei	$l_{\Lambda}j_{\Lambda}$	JB	NSC89	NSC97a	NSC97f
5He	\$1/2	0.976	0.983	0.965	0.964
13 _C	S1/2	0.950	0.940	0.933	0.933
	P3/2	-	-	0.975	0.979
	P1/2	_	-	0.976	
17O	s _{1/2}	0.942	0.930	0.923	0.924
A	P3/2	0.973	-	0.956	0.959
	P1/2	0.971	-	0.957	0.961
⁴¹ Ca	s _{1/2}	0.920	0.896	0.898	0.898
A	P3/2	0.930	0.915	0.911	0.914
	P1/2	0.929	0.914	0.910	0.912
	d5/2	0.952	_	0.932	0.938
	d3/2	0.949	-	0.931	0.939
$^{91}_{\Lambda}{ m Zr}$	s _{1/2}	0.904	0.870	0.879	0.876
	P3/2	0.906	0.875	0.884	0.883
	P1/2	0.907	0.876	0.885	0.883
	d _{5/2}	0.910	0.886	0.891	0.893
	d3/2	0.911	0.886	0.891	0.891
	f _{7/2}	0.919	0.903	0.903	0.906
00000	f _{5/2}	0.920	0.905	0.902	0.907
209 Pb	s _{1/2}	0.884	0.846	0.857	0.856
	P3/2	0.885	0.847	0.858	0.857
	P1/2	0.885	0.847	0.858	0.857
	d _{5/2}	0.896	0.858	0.870	0.869
	d3/2	0.896	0.857	0.869	0.867
	f7/2	0.891	0.852	0.863	0.857
	f _{5/2}	0.891	0.851	0.863	0.855
	89/2	0.892	0.855	0.869	0.862
	87/2	0.892	0.854	0.868	0.860

AN correlations: Z-factor of ${}^{17}_{\Lambda}$ O with chiral YN potentials

_					
	$l_{\Lambda}j_{\Lambda}$	550	600	650	700
	$s_{1/2}$	0.957	0.951	0.945	0.941
LO	$p_{3/2}$	0.970	0.968	0.965	0.962
	$p_{1/2}$	0.967	0.965	0.963	0.959
	$s_{1/2}$	0.903	0.880	0.861	0.854
NLO13	$p_{3/2}$	_	_	0.933	0.912
	$p_{1/2}$	_	_	0.939	0.914
	$s_{1/2}$	0.927	0.905	0.886	0.873
NLO19	$p_{3/2}$	0.973	0.959	0.936	0.919
	$p_{1/2}$	_	<u> </u>	0.940	0.920

[♦] Results qualitatively similar to those obtained with meson-exchange potentials

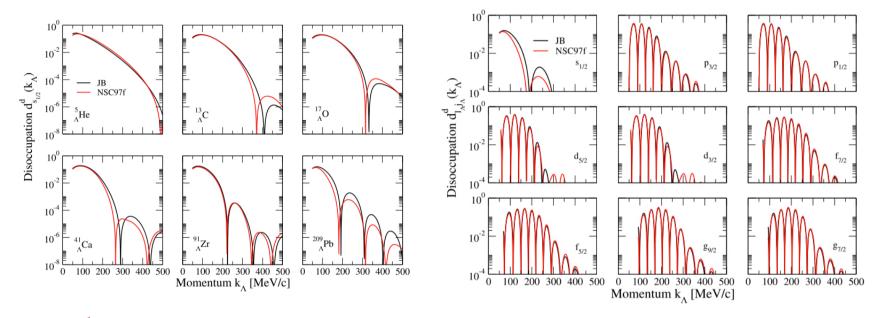
[♦] Correlations more important for the NLO13 potential

Disoccupation (discrete contribution)

 $d_{l_{\Lambda}j_{\Lambda}}^{d}(k_{\Lambda}) = \int_{\mu_{\Lambda}}^{\infty} d\omega S_{l_{\Lambda}j_{\Lambda}}^{p(d)}(k_{\Lambda}, \omega) = Z_{l_{\Lambda}j_{\Lambda}} |\langle k_{\Lambda}l_{\Lambda}j_{\Lambda}m_{j_{\Lambda}}|\Psi\rangle|^{2}$

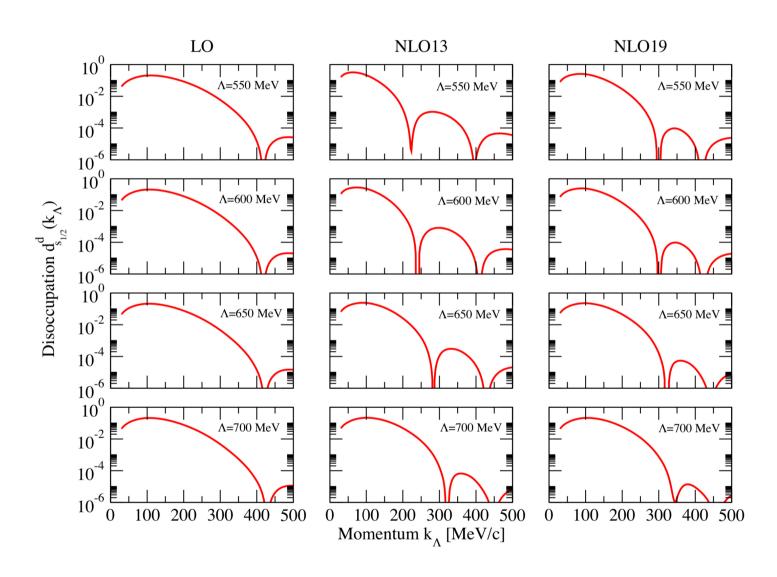
s-wave state: He, C, O, Ca, Zr & Pb JB (blak) & NSC89 (red)

s-, p-, d-, f- and g- wave states for Pb JB (black) & NSC89 (red)



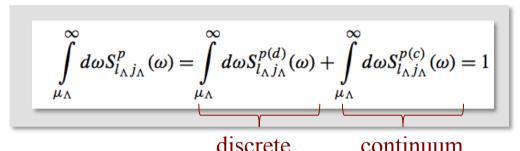
- \Leftrightarrow $\mathbf{d}^{\mathbf{d}}_{1\Lambda \mathbf{j}\Lambda}(\mathbf{k}_{\Lambda})$ gives the probability of adding a Λ of momentum \mathbf{k}_{Λ} in the s.p. state $\mathbf{l}_{\Lambda}\mathbf{j}_{\Lambda}$ of the hypernucleus
- \Rightarrow Intuitively one expects that if k_{Λ} is large the Λ can easily escape from the nucleus & the probability of binding it must be small. Both plots show in fact that $d^{d}_{l\Lambda j\Lambda}(k_{\Lambda})$ decreases when increasing k_{Λ} and is almost negligible for very large values \longrightarrow In hypernuclear production reactions the Λ is mostly formed in a quasi-free state

Disoccuparion of ¹⁷ O with chiral YN potentials



Total Disoccupation Number

The total spectral strength of the Λ hyperon fulfills the sum rule



The total disoccupation number is $1 \rightarrow$ is always possible to add a Λ either in a bound or a scattering state of a given ordinary nucleus

		uiscicic		COIIIII	uum					
Nuclei		\$1/2	p3/2	P1/2	d5/2	d3/2	f7/2	f5/2	89/2	87/2
5He	Discrete	0.964	-	_	_	_	_	_	_	_
	Continuum	0.023		_		_	_		_	_
	Total	0.987	_	_		_	_	32	_	
13℃ Λ	Discrete	0.933	0.979	-	-	(-)	-	250	(-)	-
Λ	Continuum	0.040	0.017	-	-	_	-		100	-
10.54	Total	0.973	0.996	-	-	-	_	-	-	-
17 _A O	Discrete	0.924	0.959	0.961	2	_	_	_	_	
	Continuum	0.053	0.037	0.036	-	-	_	-	-	-
	Total	0.977	0.996	0.997	-	-	_	-	-	_
⁴¹ _Λ Ca	Discrete	0.898	0.914	0.912	0.938	0.939	-	-	-	_
	Continuum	0.071	0.063	0.064	0.048	0.047	_	_	_	_
	Total	0.969	0.977	0.976	0.986	0.986	-	82	_	
$^{91}_{\Lambda}\mathrm{Zr}$	Discrete	0.876	0.883	0.883	0.893	0.891	0.906	0.907	-	-
	Continuum	0.120	0.113	0.113	0.103	0.105	0.089	0.090	1.00	-
	Total	0.996	0.996	0.996	0.996	0.996	0.995	0.997	-	-
209 _A Pb	Discrete	0.856	0.857	0.857	0.869	0.867	0.857	0.855	0.862	0.860
	Continuum	0.138	0.142	0.142	0.129	0.130	0.140	0.141	0.137	0.139
	Total	0.994	0.999	0.999	0.998	0.997	0.997	0.996	0.999	0.999

Total Disoccupation Number of ¹⁷ O with chiral YN potentials

			LO			NLO13			NLO19	
		$s_{1/2}$	$p_{3/2}$	$p_{1/2}$	$s_{1/2}$	$p_{3/2}$	$p_{1/2}$	$s_{1/2}$	$p_{3/2}$	$p_{1/2}$
	Discrete	0.957	0.970	0.967	0.903	_	-	0.927	0.973	-
550	Continuum	0.042	0.029	0.032	0.096	_	-	0.067	0.025	1-1
	Total	0.999	0.999	0.999	0.999	_	-	0.994	0.998	_
	Discrete	0.951	0.968	0.965	0.880	-		0.905	0.959	
600	Continuum	0.048	0.031	0.034	0.110	_	_	0.093	0.039	_
	Total	0.999	0.999	0.999	0.990	_		0.998	0.998	
	Discrete	0.945	0.965	0.963	0.861	0.933	0.939	0.886	0.936	0.940
650	Continuum	0.052	0.034	0.036	0.136	0.066	0.060	0.112	0.062	0.058
	Total	0.997	0.999	0.999	0.997	0.999	0.999	0.998	0.998	0.998
	Discrete	0.941	0.962	0.959	0.854	0.912	0.914	0.873	0.919	0.920
700	Continuum	0.053	0.036	0.039	0.144	0.086	0.085	0.126	0.079	0.078
	Total	0.994	0.998	0.998	0.998	0.998	0.995	0.999	0.998	0.998

The final message of this talk

♦ Purpose:

✓ Calculation of finite nuclei Λ spectral function from its self-energy derived within a perturbative many-body approach with realistic (meson-exchange & chiral) YN interactions

♦ Results & Conclusions

- ✓ Binding energies in qualitatively good agreement with experiment
- \checkmark Z-factor relatively large \longrightarrow \land less correlated than nucleons
- ✓ Discrete cont. to disoc. numb decreases with $k_{\Lambda} \longrightarrow \Lambda$ is mostly formed in a quasi-free state in production reactions
- ✓ Scattering reactions such as (e,e',K⁺) at JLAB & MAMI-C can provide valuable information on the disoccupation of Λ s.p. bound states

♦ You for your time & attention

