A new method to measure scattering length with threshold cusp

Kiyoshi Tanida

(Advanced Science Research Center, Japan Atomic Energy Agency)

Fundamental Physics at the Strangeness Frontier at DAΦNE 26 Feb. 2021

1

Scattering length

- Low energy elastic scattering
 - dominated by S-wave
 - S-wave phase shift: $\delta_0 \simeq ak$ for $k \simeq 0$
 - a characterizes low energy scattering
 → scattering length
- a>0: "attractive", a<0: "repulsive"
 - However, attractive interaction gives a < 0 if there is a bound state.
- Become complex if there is lower channel

– E.g., $\overline{K}N$ vs $\Lambda\pi$, $\Sigma\pi$ channel

Experimental methods (1)

- Low energy scattering
 - pp, pn, nA, K⁻p, ...
 - $-\sigma = 4\pi a^2$ at the low energy limit
 - Both beam & target must be stable rather limited
- Exotic atom shift from Coulomb potential
 - (Improved) Desar formula:
 shift & width ∝ complex scattering length
 - E.g., Kaonic atom experiments at J-PARC & DA Φ NE
 - Low yield & large width especially for K⁻d atom

K^{bar}N scattering length

✓ X-ray spectroscopy of K⁻p and K⁻d resolve the isospin-dependent K^{bar}N scattering length

K⁻d atom @J-PARC E57

- ✓ Large area Silicon Drift Detector arrays
- ✓ Target at 30K & 0.3 MPa to optimize stopping power & X-ray yield
- \checkmark Vertex cut & charged particle veto by using CDC \leftarrow unique in J-PARC

K⁻d atom @J-PARC E57

• Data taking in 2023 or later

Experimental methods (2)

- Low energy particle correlation
 - E.g., particle correlation at ALICE
 - Lower energy \rightarrow lower statistics

A new method: threshold cusp

Threshold cusp

- In the widest sense, cusp ALWAYS appears at thresholds.
 - Jump in strength (amp²) in the (L+1)th derivative
- Practically, cusp appears only in S-wave
- Interesting case is the 1st derivative changes sign, especially from positive to negative
 - Cusp in the narrow sense.
 - In principle, can be distinguished from usual peak by the derivative at the top, but practically there is experimental resolution.

An example

- Rather few
- K⁻(stopped)+d $\rightarrow \Lambda p\pi^-$
 - Probably the cleanest cusp ever seen, but not confirmed.

Cusp & scattering length

- Cusp occurs at a threshold
 - The statistics is highest at the threshold
 - Behavior is determined by the complex scattering length of the threshold channel
- Specific form is given by Dalitz & Deloff [Czech. J. Phys. B 32 (1982)]
 - Slope to the right: Imaginery part (b)
 - Slope to the left: real part (a)
- Width approximately scales as $1/\mu |a|^2$

Cusp & scattering length

• Above the threshold:

$$S \propto \frac{b}{(1+kb)^2 + (ka)^2} \sim b(1-2kb)$$

• Below the threshold:

$$S \propto \frac{b}{(1+|k|a)^2 + (|k|b)^2} \sim b(1-2|k|a)$$

with $k = i\sqrt{2\mu|E|}$ is pure imaginary.

• Determine a+ib with a fit to above.

Flatte distribution

- Or, we can use Flatte(-like) distribution for fitting.
 - The simplest model that can describe cusp (& usual peak)
- It is almost the same as usual BW distribution
 - Many versions reflecting variations of BW.
 - In case of two channels (P & K), it looks like

$$f_{el} = -\frac{1}{2q} \frac{\Gamma_P}{E - E_{BW} + i\frac{\Gamma_P}{2} + i\bar{g}_K\frac{k}{2}} \ . \label{eq:fel}$$

(K: threshold channel. P: threshold is far below.)

- k becomes imaginary below threshold (analytic cont.)

From peak to cusp (1)

• Jump in derivative:

 \rightarrow Always with E_{BW} > 0 and \bar{g}_{K} > 0

• When \bar{g}_K is small, cusp is hardly visible

From peak to cusp (2)

• For slightly larger \bar{g}_K , cusp & peak heights are equal.

From peak to cusp (3)

• For even larger \bar{g}_K , the spectrum becomes monotonically decreasing above the threshold

From peak to cusp (4)

- With $g_K > \sqrt{4E_{BW}/\mu}$, pole moves to Re(E) < 0 \rightarrow virtual pole
 - Peak is no longer seen

Flatte & scattering length

• From Flatte distribution, scattering length can be derived as:

$$a + ib = \frac{\bar{g}_K}{2E_{BW} - i\Gamma_P}$$

and the spectrum shape is consistent with Dalitz & Deloff up to the first order of k.

• Cusp occurs if $E_{BW} > 0$ and $\bar{g}_K > 0$

- scattering length is "attractive"

Note on width and resolution

• Width $\propto 1/\mu |a|^2$ can be arbitrary narrow near the unitarity limit

$$-$$
 ~ 18 MeV for $\mu = 0.3 GeV$ & a=b=1 fm
~ 2 MeV for $\mu = 0.6 GeV$ & a=b=2 fm

- The expression is model independent only up to the first order of k
 - High resolution is necessary
 - Important to distinguish cusp from usual peak

Some cases: $1. \Sigma N$ $2. \overline{K} N (I = 1)$

1. ΣN cusp

- K⁻(stopped)+d $\rightarrow \Lambda p\pi^-$
- Probably the cleanest cusp ever seen, but not confirmed.
 - Because the resolution is not enough

J-PARC E27 result

• Fit with Breit-Wigner (Resolution: σ =1.4 MeV) Γ = 5.3^{+1.4+0.6}_{-1.2-0.3} MeV

What should we do?

- Try even higher resolution
 - High resolution pion spectrometer + stopped K at DA Φ NE: d(K⁻_{stopped}, π^-) \rightarrow Good S/N, yield
 - J-PARC: S-2S spectrometer
 & High-Intensity High-Resolution beamline at extended Hadron Hall
- Tagging of the final state is necessary
 - Must be ΛN to derive ΣN (I=1/2) scattering length
 - $-\Sigma N$ (I=3/2) contaminate if not tagged

S-2S Spectrometer

- 1 MeV (FWHM) resolution possible
- Designed for spectroscopy of Ξ hypernuclei

HIHR @J-PARC Extension

- Beamline with large dispersion
 + dispersion matching technique
- Resolution:
 ~0.1 MeV(FWHM)

possible

Details under discussion

$2. \overline{K}N(I=1)$

- Target of J-PARC E57 and SIDDHARTA-2 @DA ΦNE
- Cusp candidates are observed in $\Lambda \pi^{\pm}$ invariant mass spectra, especially from Λ_{c} decay

More experiments?

- x50 more statistics will be accumulated in Belle II.
- J-PARC:
 S-2S & HIHR can be used for this study, too.
 p(K⁻,π[±])Λπ[∓] or p(π[±],K⁺)Λπ[±]
- Difficult at DA Φ NE with low-energy kaons.
- Cusps at other thresholds can be searched for:
 - Nη, Λη, Ση, ΛΚ,
 - Charmed or even bottom particles
 (cf. X(3872) vs D⁰D^{0*})

Summary

- Scattering length
 - Fundamental parameter to characterize low energy interaction
 - Measured with several methods
- Threshold cusp
 - A peak-like structure on a threshold
 - Can be used to derive scattering length
- Some examples
 - $-\Sigma N(I=1/2), \overline{K}N(I=1), ...$
 - Interesting possibility with the present data, and future experiments at J-PARC & ${\rm DA}\Phi{\rm NE}$

Backup