Kaon masses. Why are they important?

Claude Amsler

Stefan Meyer Institute, Vienna, Austria

and

Simon Eidelman (s_{peaker})

Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia and Lebedev Physical Institute RAS, Moscow, Russia

OUTLINE

1. Introduction

- 2. Status of $m(K^{\pm})$ measurements
- 3. Status of $m(K^0)$ measurements
- 4. Prospects

Introduction

- The π^{\pm} mass accuracy is 1.2×10^{-6} , while for K^{\pm} it is 20 times worse, 2.6×10^{-5} . The same accuracy has been achieved for the K^0 mass.
- The D^0 -meson mass is restricted by the accuracy of $m(K^{\pm})$ and $m(K^0)$. In turn, masses of excited charmed mesons for which direct measurements are not precise, $D_1(2420)^0$, $D_2^*(2460)^0$ and $D_{s1}(2536)^{\pm}$, are precisely determined from a fit of measured masses and mass differences for D^0 , D^{\pm} and D_s^{\pm} .
- Knowledge of kaon masses affects our understanding of the $\chi_{c1}(3872)$ (X(3872)) nature - the first of X, Y, Z states, discovered by Belle in 2003. Its current explanation – a mixture of regular $c\bar{c}$ and $D^0\bar{D}^{*0}$ molecule. How close is $m(\chi_{c1}(3872))$ to the $D^0\bar{D}^{*0}$?
- The whole mass scale for charmed hadrons comes from the J/ψ and ψ(2S): 3096.900 ± 0.002 ± 0.006 MeV and 3686.099 ± 0.004 ± 0.009 MeV measured by KEDR in Novosibirsk V.V. Anashin et al., Phys. Lett. B749 (2015) 50

 D^0 and D^{*0} Masses

From the fit including D^{\pm} , D^{0} , D_{s}^{\pm} , $D^{*\pm}$, D^{*0} , $D^{*\pm}$, $D_{s}^{*\pm}$, D_{1}^{*0} , $D_{2}^{*\pm}$, $D_{2}^{*}(2460)^{0}$, $D_{s1}(2536)^{\pm}$ masses and mass differences

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1864.83 ±0.05 O	UR FIT				
1864.84 ± 0.05 O	UR AVERAGE				
$1864.845 \pm 0.025 \pm 0.025$).057 63k	¹ TOMARADZE	14		$D^0 \rightarrow K^- 2\pi^+ \pi^-$
1864.75 $\pm 0.15 \pm 0.15$	0.11	AAIJ	13V	LHCB	$D^0 \rightarrow K^+ 2K^- \pi^+$
$1864.841 \pm 0.048 \pm 0.048 \pm 0.0000 \pm 0.0000 \pm 0.0000 \pm 0.0000 \pm 0.0000 \pm 0.00000 \pm 0.00000 \pm 0.00000000$).063 4.3k	² LEES	13S	BABR	e^+e^- at $\Upsilon(4S)$
1865.30 $\pm 0.33 \pm 0.00$).23 0.1k	ANASHIN	10A	KEDR	e^+e^- at ψ (3770)
$1864.847 \pm 0.150 \pm 0.000$	0.095 0.3k	CAWLFIELD	07	CLEO	$D^0 \rightarrow K^0_S \phi$

¹ Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration. The largest source of error in the TOMARADZE 14 value is from the uncertainties in the K^- and K_S^0 masses. The systematic error given above is the addition in quadrature of $\pm 0.022 \pm 0.053$ MeV, where the second error is from those mass uncertainties. ² The largest source of error in the LEES 13S value is from the uncertainty of the K^+

²The largest source of error in the LEES 13S value is from the uncertainty of the K^+ mass. The quoted systematic error is in fact $\pm 0.043 + 3 \ (m_{K^+} - 493.677)$, in MeV.

PDG 2020: $m(D^*(2007)^0) - m(D^0) = 142.014 \pm 0.030$ MeV

$\chi_{c1}(3872)$ and $D^0 D^{*0}$ Threshold

 $\delta E = m(D^0) + m(D^{*0}) - m(\chi_{c1}(3872))$

Group	δE , MeV	Reference
BaBar	0.12 ± 0.24	Phys.Rev. D88 (2013) 071104
CLEO-c data	0.126 ± 0.204	Phys.Rev. D89 (2014) 031501
LHCb	0.07 ± 0.12	JHEP 2008 (2020) 123

K^{\pm} MASS

VALUE (MeV) DOCUMENT ID			TECN CHG	COMMENT		
493.677±0.016 OUR FIT	Error includes scale	e facto	r of 2.8.			
493.677±0.013 OUR AVER	AGE Error includ	es scale	e factor of 2.4.	See the ideogram		
below.	_					
493.696±0.007	¹ DENISOV	91	CNTR -	Kaonic atoms		
493.636±0.011	² GALL	88	CNTR -	Kaonic atoms		
493.640±0.054	LUM	81	CNTR -	Kaonic atoms		
493.670±0.029	BARKOV	79	EMUL \pm	$e^+e^- \rightarrow K^+K^-$		
493.657±0.020	² CHENG	75	CNTR -	Kaonic atoms		
493.691±0.040	BACKENSTO)73	CNTR -	Kaonic atoms		
 • • We do not use the fo 	llowing data for ave	erages,	fits, limits, etc	5. • • •		
493.631±0.007	GALL	88	CNTR -	K^- Pb (9 $ ightarrow$ 8)		
493.675±0.026	GALL	88	CNTR -	K^- Pb (11 $ ightarrow$ 10)		
493.709±0.073	GALL	88	CNTR -	$K^- W (9 \rightarrow 8)$		
493.806±0.095	GALL	88	CNTR -	$K^- W (11 \rightarrow 10)$		
$493.640 \pm 0.022 \pm 0.008$	³ CHENG	75	CNTR -	K^- Pb (9 \rightarrow 8)		
$493.658 \pm 0.019 \pm 0.012$	³ CHENG	75	CNTR -	K^- Pb (10 \rightarrow 9)		
$493.638 \pm 0.035 \pm 0.016$	³ CHENG	75	CNTR -	K^- Pb (11 $ ightarrow$ 10)		
$493.753 \!\pm\! 0.042 \!\pm\! 0.021$	³ CHENG	75	CNTR -	K^- Pb (12 \rightarrow 11)		
$493.742 \pm 0.081 \pm 0.027$	³ CHENG	75	CNTR -	K^- Pb (13 \rightarrow 12)		

Measurement of $(m(K^+) + m(K^-))/2$ at VEPP-2M – I

 $e^+e^- \to \phi \to K^+K^-$

The average mass $(m(K^+) + m(K^-))/2$ was measured as a difference of the beam energy and kaon kinetic energy T_K .

Beam energy from resonance depolarization with 10 keV accuracy $(\Delta E/E \approx 2 \times 10^{-5}).$

 T_K determined from the kaon range in the nuclear emulsion.

121 events selected in two runs.

L.M. Barkov et al., Nucl. Phys. B148 (1979) 53

Measurement of $(m(K^+) + m(K^-))/2$ at VEPP-2M – II

Fig. 1. The emulsion chamber scheme: 1, the storage ring vacuum tube; 2, the emulsion pellicles; 3, the interaction region.

L.M. Barkov et al., Nucl. Phys. B148 (1979) 53

Measurement of $(m(K^+) + m(K^-))/2$ at VEPP-2M – III

Measurement of K^0 Mass

K⁰ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT		
497.611±0.013 OUR FIT Error includes scale factor of 1.2.							
497.611±0.013 OUR A	/ERAGE E	rror includes sca	le fac	tor of 1.	2.		
$497.607 \pm 0.007 \pm 0.015$	261k ¹	TOMARADZE	14		$\psi(2S) \rightarrow K^0_S X$		
$497.583 \pm 0.005 \pm 0.020$	35k	AMBROSINO	07 B	KLOE	$e^+e^- \rightarrow K^0_L K^0_S$		
$497.625 \pm 0.001 \pm 0.031$	655k	LAI	02	NA48	K ⁰ ₁ beam		
497.661 ± 0.033	3713	BARKOV	87 B	CMD	$e^{+}e^{-} \rightarrow K^{0}_{L}K^{0}_{S}$		
497.742 ± 0.085	780	BARKOV	85B	CMD	$e^+e^- \rightarrow K^0_L K^0_S$		
● ● We do not use the following data for averages, fits, limits, etc. ● ● ●							
497.44 ± 0.50		FITCH	67	OSPK			
498.9 ± 0.5	4500	BALTAY	66	HBC	K ⁰ from <u>p</u> p		
497.44 ± 0.33	2223	KIM	65B	HBC	K ⁰ from <u>p</u> p		
498.1 ± 0.4		CHRISTENS	64	OSPK			

 $^1\,\mathrm{Obtained}$ by analyzing CLEO-c data but not authored by the CLEO Collaboration.

Measurement of $m(K^0)$ at VEPP-2M – I

 $e^+e^- \rightarrow \phi \rightarrow K_S^0 K_L^0, \ K_S^0 \rightarrow \pi^+\pi^- \text{ at } 1018.64 \pm 0.03 \text{ MeV}$ The minimal angle $\psi(\pi^+, \pi^-) \approx 150^\circ$, the kaon momentum is 108.3 MeV/c. The collected luminosity is 17.7/nb and 35.3/nbat the field value of 14.93 kG and 24.70 kGL.M. Barkov et al., Sov. J. Nucl. Phys. 46 (1987) 630

L.M. Barkov et al., Sov. J. Nucl. Phys. 46 (1987) 630

S.Eidelman-BINP/LPI

p.12/20

Measurement of $m(K^0)$ at VEPP-2M – III

The average of four measurements is $m(K^0) = 497.661 \pm 0.033$ MeV L.M. Barkov et al., Sov. J. Nucl. Phys. 46 (1987) 630

S.Eidelman-BINP/LPI

p.13/20

Measurement of K^{\pm} and K^{0} Mass Difference

$m_{K^0} - m_{K^{\pm}}$

VALU	E (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT	
3.934±0.020 OUR FIT Error includes scale factor of 1.6.								
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$								
3.95	± 0.21	417	HILL	68B	DBC	+	$K^+ d \rightarrow$	К ⁰ р р
3.90	± 0.25	9	BURNSTEIN	65	HBC	_		
3.71	± 0.35	7	KIM	65B	HBC	_	$K^- p \rightarrow$	n \overline{K}^0
5.4	± 1.1		CRAWFORD	59	HBC	+		
3.9	± 0.6		ROSENFELD	59	HBC	_		

Prospects

- New $m(K^{\pm})$ measurements planned with kaonic atoms, see the talks by A. Scordo and D. Bosnar this afternoon
- A new $m(K^{\pm})$ measurement with emulsions is tempting, but very challenging, expertise in the field needed!
- Is a high-statistics measurement of the mass difference feasible at CERN or JLAB?
- CMD-3 plans a feasibility study of the $m(K^0)$ measurement at VEPP-2000
- Is a threshold measurement of kaon mass possible, similar to the one of the τ-lepton mass, how large are strong form factor uncertainties?

Threshold Measurement of τ Lepton Mass – I

The $e^+e^- \rightarrow \tau^+\tau^-$ cross section is known precisely from QED, the only parameter is τ -lepton mass, $\sigma(s = 4m_{\tau}^2) = 0$.

Various corrections affect $\sigma(s)$ and smear 0:

- Coulomb interaction
- Radiative corrections (ISR initial, FSR final)
- Vacuum polarization (lepton and hadron loops)

$$\sigma(W) = \frac{1}{\sqrt{2\pi\sigma_W}} \int dW' \exp\left\{-\frac{(W-W')^2}{2\sigma_W^2}\right\} \int dx \, F_c(x, W') \, \sigma_{fs}(W'\sqrt{1-x}),$$

$$F_c(\beta) = (\pi \alpha / \beta) / (1 - \exp(-\pi \alpha / \beta)), \quad \beta = (1 - (2m_\tau / W)^2)^{1/2}$$

S.Eidelman-BINP/LPI

p.16/20

Threshold Measurement of τ Lepton Mass – II

- ... Born cross section
- \bullet - Coulomb, FSR and VP corrections
- -.- ISR corrections
- $\bullet\,$ – Beam energy spread

BESIII (24 pb⁻¹ at 4 points, 1171 events) $m_{\tau} = 1776.91 \pm 0.12^{+0.10}_{-0.13} \text{ MeV}$ M. Ablikim et al., Phys. Rev. D90, 012001 (2014)

$e^+e^- \to K^+K^-$ Cross Section near Threshold

$$\sigma = \frac{8\pi\alpha\beta^3}{3s}F_c(s)T_R(s),$$

where

$$T_{R}(s) = \left|\frac{g_{\phi\gamma}g_{\phi K\bar{K}}}{D_{\phi}(s)} + A_{\rho} + A_{\omega} + A_{\rho',\omega',\phi'}\right|^{2},$$

the inverse propagator

$$D_V(s) = m_V^2 - s - i\sqrt{s}\Gamma_V(s),$$

the total width - the sum of partial widths

$$\Gamma_V(s) = \Gamma_V \Sigma \mathcal{B}_i P_i(s),$$

with \mathcal{B}_i - branching, $P_i(s)$ - phase space of the i-th partial width.

E.A. Kozyrev et al., Phys. Lett. B779 (2018) 64

Conclusions

- Accuracy of the charged and neutral kaon masses is a limiting issue in various applications
- $m(K^{\pm})$ and $m(K^{0})$ as masses of the ground-state strange hadrons are of interest for theory in potential models and lattice calculations
- Different ideas of improving the accuracy exist and various laboratories can contribute !