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The simplest optical potential:

2µVopt(r) = −4π(1 +
A− 1

A

µ

M
){b0[ρn(r) + ρp(r)] + b1[ρn(r)− ρp(r)]} .

ρn and ρp are the neutron and proton density distributions, M is
the mass of the nucleon, µ is the reduced mass.

Global fits to kaonic atom data usually cannot determine b1.
Good fits (χ2=129 for 65 points) lead to

b0 = 0.63± 0.06 + i (0.89± 0.05) fm,
which in the impulse approximation is minus the scattering
amplitude at threshold.
From phase-shifts b0 = −0.15 + i 0.62 fm.

The low-density limit is not respected. (1993)
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Early attempts to use chiral amplitudes

Ramos & Oset, NPA 671 (2000) 481
Baca et al., NPA 673 (2000) 335
Cieply et al.,NPA 696 (2001) 173

Poor agreement with data (χ2(65)=300)

Reduced χ2 to 200 with typical 50% rescaling

χ2=130 by adding a tρ term with NEGATIVE absorption

Something is missing!
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Seven chiral K−
N models constrained by fits to near-threshold

data, including the SIDDHARTA result for K−H at threshold
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For attractive potentials the energy
√
s is below threshold within

the nuclear medium.

In addition there are corrections due to Pauli correlations.

The algorithm performs averaging over subthreshold energies.

PLB 702 (2011) 402; PRC 84 (2011) 045206; NPA 899 (2013) 60;
EPJ Web of Conferences 81 (2014) 01018; NPA 959 (2017);
(partial list).
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χ2 for 65 kaonic atoms data points from optical potentials based
only on single-nucleon amplitudes, including subthreshold energies.

model B2 B4 M1 M2 P KM BCN

χ2(65) 1174 2358 2544 3548 2300 1806 2829

Not fits!
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Fits to 65 kaonic atoms data points when single-nucleon amplitudes are
supplemented by a B0(ρ/ρ0)

α amplitude with fixed α compatible with its
best-fit value. B0 in units of fm.

model BCN M1 M2 P KM
α 1.0 0.3 1.0 1.0 1.0

ReB0 −1.6±0.3 0.3±0.1 2.1±0.2 −1.3±0.2 −0.9±0.2
ImB0 2.0±0.3 0.8±0.1 1.2±0.2 1.5±0.2 1.4±0.2
χ2(65) 112 121 109 125 123

Is it necessary to go subthreshold?
Example for KM, when δ

√
s=0:

α = 1.0, ReB0 = −1.8± 0.1, ImB0 = −1.1± 0.1, χ2(65) =139

Negative ImB0 and/or significantly larger χ2 obtained for all seven
models when taken on threshold.
Similar problems when ignoring Pauli correlations.
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Example of global fit to kaonic atoms data, L=1...6
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Kaonic atoms overlaps for ‘lower’ (solid curves) and ‘upper’
(dashed curve) states.
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It is an atomic-nuclear system!
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The level width Γ is obtained from the eigenvalue EK− − iΓ/2
when solving the Klein-Gordon equation with an optical potential,
(EK− = mK− − BK−). It is also related to the imaginary part of
the potential by the overlap integral of ImVK− and |ψ|2,

Γ = −2

∫
ImVK− |ψ|2 d~r

∫
[1− (BK− + VC)/µK ] |ψ|2 d~r

where BK− , VC and µK are the K
− binding energy, Coulomb

potential and reduced mass, respectively, and ψ is the K
− wave

function of the particular state concerned.
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Focusing on the multinucleon absorption

When the best fit optical potential is V
(1)
K−

+V
(2)
K−

, the sum of a
single-nucleon part and a multinucleon part, it is possible to
calculate the fraction of single-nucleon absorptions, separately for
any nucleus and for any specific kaonic atom state.
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Fraction of single-nucleon absorption for amplitudes P and KM.
Solid circles for lower states, open squares for upper states.
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Fraction of single-nucleon absorption for amplitudes BCN. Solid
circles for lower states, open squares for upper states.
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Interim Summary

phenomenology → (threshold single N+phen.) →
(subthreshold 1N+phen.) → (sub. 1N+2N+phen.)

model χ2(65) comments

phen. 130 -
thresh.1N+phen. 300 ImB0 < 0

subthresh. 1N 2800 -
subthresh. 1N+phen. 129 ImB0 > 0
subthresh. 1N+2N 338 -

subthresh. 1N+2N +phen. 134 yet incomplete
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The simplest model of absorption on two nucleons calls for an
imaginary part of the optical potential that is proportional to ρ2

ΓNN ∝
∫
ρ2|ψ|2 d~r where the kaonic atom wave function ψ is

normalized to a volume integral of 1. Normalizing also the overlap
integral with ρ2 and normalizing on A nucleons, we define a
parameter β2 as follows

ΓNN = β2
A
∫
ρ2|ψ|2 d~r∫
ρ2 d~r

.

Studies of the parameter β2 along the periodic table could lead to
insight on absorption of K− in nuclei beyond the absorption on a
single nucleon,

β2 = ΓNN

∫
ρ2 d~r

A
∫
ρ2|ψ|2 d~r

N. Barnea (Feb. 2020), private communication.
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Comparing kaonic and pionic atoms

type ImV No. data points No. species L values

K
− 1N+2N 65 24 1-6(7)

π− 2N s+p waves 116 50 0-3

The s-wave term in the pionic potential is an analog of the 2N
term in the kaonic potential. Easy to separate the s-wave term
from the full potential. Experimental errors are generally smaller
than the kaonic atom errors. Similar qualities of fits.
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With

β2 = ΓNN

∫
ρ2 d~r

A
∫
ρ2|ψ|2 d~r

≈ constant??

we note that for a K
− in an atomic s-state and Z close to 1,

|ψ|2 may be replaced by |ψ(0)|2 and then

β2 = ΓNN/A |ψ(0)|2.
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For the more general case and noting that∫
ρ2 d~r = A ρ̄

with ρ̄ the average nuclear density, we end up with
β2 = ρ̄ ΓNN∫

ρ2|ψ|2 d~r
.

Since ΓNN is approximately proportional to
∫
ρ2|ψ|2 d~r it is

expected that β2 will be proportional to the average nuclear
density that increases sharply from 3He to 12C, and then assumes a
rather constant value. A notable exception is 4He with a density
typical of a medium-weight nucleus.
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Summary

Significant progress in understanding kaonic atoms,
converging on multinucleon interaction with the nucleus.

35-40 years old data have yielded beyond expectations.

High quality measurements for L=1 kaonic states in 3,4He,
6,7Li, 9Be, 10,11B and 12C could allow for few-body
approaches, connecting to the density dependence in heavier
kaonic atoms.

It is high time for new experiments.

I wish to thank Avraham Gal and Nir Barnea for meetings and
discussions.
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