A(1405) and the antikaonnucleon potential

Tetsuo Hyodo

Tokyo Metropolitan Univ.

Contents

Λ(1405) in meson-baryon scattering

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012);

T. Hyodo, M. Niiyama, arXiv: 2010.07592 [hep-ph], to appear in PPNP

$\bar{K}N$ potentials and their applications

K. Miyahara. T. Hyodo, PRC 93, 015201 (2016);

K. Miyahara, T. Hyodo, W. Weise, PRC 98, 025201 (2018)

- Kaonic nuclei

S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, PRC95, 065202 (2017)

- Kaonic deuterium

T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

- K⁻p correlation function

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020)

Summary

(THEIA-REIMEI Seminar on 17 Mar.)

$\Lambda(1405)$ and $\bar{K}N$ scattering

$\Lambda(1405)$ does not fit in standard picture —> exotic candidate

N. Isgur and G. Karl, Phys. Rev. D18, 4187 (1978)

: theory

: experiment

Resonance in coupled-channel scattering

- coupling to MB states

Detailed analysis of $\bar{K}N$ - $\pi\Sigma$ scattering is necessary.

Strategy for $\bar{K}N$ interaction

Above the $\bar{K}N$ threshold: direct constraints

- K⁻p total cross sections (old data)
- $\bar{K}N$ threshold branching ratios (old data)
- K⁻p scattering length (new data : SIDDHARTA)

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012)

Below the $\bar{K}N$ threshold: indirect constraints

- $\pi\Sigma$ mass spectra (new data : LEPS, CLAS, HADES, ...)

Best-fit results

Experiment

 2.36 ± 0.04

[10]

[11]

[11]

[11]

 $\pi^-\Sigma^+$) [mb]

60

50

40

TWTWB NLO $\Delta E \text{ [eV]}$ 377 $283 \pm 36 \pm 6$ 373 306 Γ [eV] $541 \pm 89 \pm 22$ 495 514 591 2.36 2.37 2.36 0.200.19 0.19 0.189 ± 0.015 R_c 0.660.66 0.66 0.664 ± 0.011 $\chi^2/\mathrm{d.o.f}$ 1.12 1.15 0.96

SIDDHARTA

Branching ratios

TW ---TWB ····· NLO —

Accurate description of all existing data ($\chi^2/d.o.f \sim 1$)

20

50

100

150

 P_{lab} [MeV/c]

200

Comparison with SIDDHARTA

	TW	TWB	NLO
χ² /d.o.f.	1.12	1.15	0.957

TW and TWB are reasonable, while best-fit requires NLO.

Subthreshold extrapolation

Uncertainty of $\bar{K}N \rightarrow \bar{K}N(I=0)$ amplitude below threshold

Y. Kamiya, K. Miyahara, S. Ohnishi, Y. Ikeda, T. Hyodo, E. Oset, W. Weise,

NPA 954, 41 (2016)

- c.f. without SIDDHARTA

R. Nissler, Doctoral Thesis (2007)

SIDDHARTA is essential for subthreshold extrapolation.

Extrapolation to complex energy: two poles

Two poles: superposition of two eigenstates

J.A. Oller, U.G. Meißner, PLB 500, 263 (2001);

D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meißner, NPA 723, 205 (2003);

U.G. Meißner, Symmetry 12, 981 (2020); M. Mai, arXiv: 2010.00056 [nucl-th];

T. Hyodo, M. Niiyama, arXiv: 2010.07592 [hep-ph], to appear in PPNP

T. Hyodo, D. Jido, PPNP 67, 55 (2012)

NLO analysis confirms the two-pole structure.

PDG has changed

2020 update of PDG

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012);

Z.H. Guo, J.A. Oller, PRC87, 035202 (2013);

M. Mai, U.G. Meißner, EPJA51, 30 (2015)

- Particle Listing section:

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

$$I(J^P) = O(\frac{1}{2})$$
 Status: ***

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

$$J^P = \frac{1}{2}$$
 Sta

Status: **

T. Hyodo, M. Niiyama, arXiv: 2010.07592 [hep-ph], to appear in PPNP

- "Λ(1405)" is no longer at 1405 MeV but ~ 1420 MeV.
- Lower pole: two-star resonance $\Lambda(1380)$

Contents

Λ(1405) in meson-baryon scattering

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012);

T. Hyodo, M. Niiyama, arXiv: 2010.07592 [hep-ph], to appear in PPNP

$\bar{K}N$ potentials and their applications

K. Miyahara. T. Hyodo, PRC 93, 015201 (2016);

K. Miyahara, T. Hyodo, W. Weise, PRC 98, 025201 (2018)

- Kaonic nuclei

S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, PRC95, 065202 (2017)

- Kaonic deuterium

T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

- K⁻p correlation function

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020)

Summary

(THEIA-REIMEI Seminar on 17 Mar.)

KN potentials and their applications

Construction of $\bar{K}N$ potentials

Local KN potential is useful for various applications

 $\bar{K}N$ potentials and their applications

Kaonic nuclei

Rigorous few-body approach to \bar{K} nuclear systems

S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, PRC95, 065202 (2017).

- Stochastic variational method with correlated gaussians

$$\hat{V} = \hat{V}^{\bar{K}N}(\text{Kyoto } \bar{K}N) + \hat{V}^{NN}(AV4')$$
 (single channel)

Results for kaonic nuclei with A = 2, 3, 4, 6

	KNN	KNNN	KNNNN	KNNNNNN
B [MeV]	25-28	45-50	68-76	70-81
Γ[MeV]	31-59	26-70	28-74	24-76

- quasi-bound state below the lowest threshold
- decay width (without multi-N absorption) ~ binding energy

Interplay between NN and KN correlations 1

Two-nucleon system

unbound

(quasi-)bound

$$\frac{\bar{K}N(I=0)}{\bar{K}N(I=1)} = 3$$

$$^3S_1(I_{NN}=0)$$

bound (d)

unbound

$$\frac{\bar{K}N(I=0)}{\bar{K}N(I=1)} = \frac{1}{3}$$

Interplay between NN and $\bar{K}N$ correlations 2

Four-nucleon system with $J^P = 0^-$, I = 1/2, $I_3 = +1/2$

- KN correlation

$$I = 0$$
 pair in K^-p (3 pairs) or \bar{K}^0n (2 pairs) : $|C_1|^2 > |C_2|^2$

- NN correlation

ppnn forms
$$\alpha : |C_1|^2 < |C_2|^2$$

- Numerical result

$$|C_1|^2 = 0.08, \quad |C_2|^2 = 0.92$$

NN correlation > $\bar{K}N$ correlation

 $\bar{K}N$ potentials and their applications

Kaonic deuterium: background

K-pn system with strong + Coulomb interaction

- Experiments are planned at J-PARC E57, SIDDHARTA-2

Shift-width of the 1S state:

T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

$$\Delta E - i\Gamma/2 = (670 - i508) \text{ eV}$$

- Deser-type formula does not work accurately for K⁻d

c.f.) J. Revai, PRC 94, 054001 (2016)

	$\Delta E \text{ (eV)}$	Γ (eV)
Full Schrödinger equation	670	1016
Improved Deser formula (18)	910	989
Resummed formula (19)	818	1188

 $\bar{K}N$ potentials and their applications

$$I=1$$
 dependence

Study sensitivity to I = 1 interaction

- introduce parameter β to control the potential strength

Re
$$\hat{V}^{\bar{K}N(I=1)} \rightarrow \beta \times \text{Re } \hat{V}^{\bar{K}N(I=1)}$$

Vary β within SIDDHARTA uncertainty of K^-p

- allowed region: $-0.17 < \beta < 1.08$ (negative β may contradict with scattering data)

β	<i>K</i> − <i>p</i>		K^-d	
	ΔE	Γ	$\overline{\Delta E}$	Γ
1.08	287	648	676	1020
1.00	283	607	670	1016
-0.17	310	430	506	980

- deviation of ΔE of $K^-d \sim 170 \text{ eV}$
- Planned precision: 60 eV (30 eV) at J-PARC (SIDDHARTA-2)

Measurement of K^-d will provide strong constraint on I=1

New data : K^-p correlation function

K⁻p total cross sections

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011)

Old bubble chamber data

K⁻p correlation function

ALICE collaboration, PRL 124, 092301 (2020)

$$C(\mathbf{q}) = \frac{N_{K^-p}(\mathbf{p}_{K^-}, \mathbf{p}_p)}{N_{K^-}(\mathbf{p}_{K^-})N_p(\mathbf{p}_p)}$$

- Excellent precision (\bar{K}^0n cusp)
- Low-energy data below $\bar{K}^0 n$
- -> important constraint on $\Lambda(1405)$ theories

correlation function

Prediction from chiral SU(3) dynamics

Theoretical calculation of C(q)

$$C(\mathbf{q}) \simeq \int d^3 \mathbf{r} |S(\mathbf{r})| |\Psi_{\mathbf{q}}^{(-)}(\mathbf{r})|^2$$

- wave function $\Psi_{\bf q}^{(-)}({\bf r})$: coupled-channel $\bar KN$ - $\pi\Sigma$ - $\pi\Lambda$ potential
- source function $S(\mathbf{r})$: determined by K^+p data

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020)

Correlation function is well reproduced.

Summary

Pole structure of the $\Lambda(1405)$ region is now well constrained by the experimental data.

" $\Lambda(1405)$ " -> $\Lambda(1405)$ and $\Lambda(1380)$

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012);

T. Hyodo, M. Niiyama, arXiv: 2010.07592 [hep-ph], to appear in PPNP

 $\bar{K}N$ potentials are useful for various applications, Kaonic nuclei, Kaonic deuterium, and K^-p correlation function

K. Miyahara. T. Hyodo, PRC 93, 015201 (2016);

K. Miyahara, T. Hyodo, W. Weise, PRC 98, 025201 (2018);

S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, PRC95, 065202 (2017);

T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017);

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020)