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 and  scatteringΛ(1405) K̄N
 in meson-baryon scatteringΛ(1405)

 does not fit in standard picture —> exotic candidateΛ(1405)

: experiment

Λ(1405)

: theory

N. Isgur and G. Karl, Phys. Rev. D18, 4187 (1978)

Resonance in coupled-channel scattering

 thresholdK̄N

en
er

gy Λ(1405)

 thresholdπΣ

Detailed analysis of -  scattering is necessary.K̄N πΣ
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- coupling to MB states
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Strategy for  interactionK̄N

Above the  threshold : direct constraintsK̄N

-  total cross sections (old data)K−p

Below the  threshold: indirect constraintsK̄N

-  mass spectra (new data : LEPS, CLAS, HADES, …)πΣ

-  threshold branching ratios (old data)K̄N
-  scattering length (new data : SIDDHARTA)K−p

K̄N

πΣ
energy

Λ(1405)

 in meson-baryon scatteringΛ(1405)

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012)



TW TWB NLO Experiment

�E [eV] 373 377 306 283± 36± 6 [10]

� [eV] 495 514 591 541± 89± 22 [10]

� 2.36 2.36 2.37 2.36± 0.04 [11]

Rn 0.20 0.19 0.19 0.189± 0.015 [11]

Rc 0.66 0.66 0.66 0.664± 0.011 [11]

�2/d.o.f 1.12 1.15 0.96

pole positions 1422� 16i 1421� 17i 1424� 26i

[MeV] 1384� 90i 1385� 105i 1381� 81i

Table 1
Results of the systematic �2 analysis using leading order (TW) plus Born terms (TWB) and full NLO
schemes. Shown are the energy shift and width of the 1s state of the kaonic hydrogen (�E and �),
threshold branching ratios (�, Rn and Rc), �2/d.o.f of the fit, and the pole positions of the isospin I = 0
amplitude in the K̄N -⇡⌃ region.

the subtraction constants ai in Eq. (7), especially those in the ⇡⇤ and ⌘⌃ channels,
exceed their expected “natural” values ⇠ 10�2 by more than an order of magnitude [14].
This clearly indicates the necessity of including higher order terms in the interaction
kernel Vij . It also emphasizes the important role of the accurate kaonic hydrogen data in
providing sensitive constraints.

The additional inclusion of direct and crossed meson-baryon Born terms does not
change �E and �2/d.o.f. in any significant way. It nonetheless improves the situation
considerably since the subtraction constants ai now come down to their expected “nat-
ural” sizes.

The best fit (with �2/d.o.f. = 0.96) is achieved when incorporating NLO terms in the
calculations. The inputs used are: the decay constants f⇡ = 92.4 MeV, fK = 110.0 MeV,
f⌘ = 118.8 MeV, and axial vector couplings D = 0.80, F = 0.46 (i.e. gA = D+F = 1.26);
subtraction constants at a renormalization scale µ = 1 GeV (all in units of 10�3): a1 =
a2 = �2.38, a3 = �16.57, a4 = a5 = a6 = 4.35, a7 = �0.01, a8 = 1.90, a9 = a10 =
15.83; and NLO parameters (in units of 10�1 GeV�1): b̄0 = �0.48, b̄D = 0.05, b̄F =
0.40, d1 = 0.86, d2 = �1.06, d3 = 0.92, d4 = 0.64. Within the set of altogether
“natural”-sized constants ai the relative importance of the K⌅ channels involving double-
strangeness exchange is worth mentioning.

As seen in Table 1, the results are in excellent agreement with threshold data. The
same input reproduces the whole set of K�p cross section measurements as shown in
Fig. 2 (Coulomb interaction e↵ects are included in the diagonal K�p ! K�p channel
as in Ref. [6]). A systematic uncertainty analysis has been performed by varying the
parameters obtained from �2 fits within the range permitted by the uncertainty measures
of the kaonic hydrogen experimental data. Since the shift and width of kaonic hydrogen
are rather insensitive to the I = 1 scattering amplitudes, the total cross section of
K�p ! ⇡0⇤ reaction is also used for the uncertainty analysis. We find that all cross
sections are well reproduced with the constraint from the kaonic hydrogen measurement
as shown by the shaded areas in Fig. 2. A detailed description of this analysis will be
given in a longer forthcoming paper [15].

Equipped with the best fit to the observables at K�p threshold and above, an opti-
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Best-fit results
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Comparison with SIDDHARTA

TW and TWB are reasonable, while best-fit requires NLO.
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 in meson-baryon scatteringΛ(1405)
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Subthreshold extrapolation
Uncertainty of  amplitude below thresholdK̄N → K̄N(I = 0)

Y. Kamiya, K. Miyahara, S. Ohnishi, Y. Ikeda, T. Hyodo, E. Oset, W. Weise, 
NPA 954, 41 (2016)
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Figure 5.13: Real (left panel) and imaginary part (right panel) of the I = 0 K̄N and
πΣ amplitudes in the full approach. The best fit is represented by the solid lines while
the bands comprise all fits in the 1σ region. The πΣ and K̄N thresholds are indicated
by the dotted vertical lines.

R. Nissler, Doctoral Thesis (2007)

SIDDHARTA

f (I=0) = ( fK−pK−p + 2fK−pK̄0n + fK̄0nK̄0n)/2

 in meson-baryon scatteringΛ(1405)
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Extrapolation to complex energy: two poles

J.A. Oller, U.G. Meißner, PLB 500, 263 (2001);
D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meißner, NPA 723, 205 (2003);
U.G. Meißner, Symmetry 12, 981 (2020); M. Mai, arXiv: 2010.00056 [nucl-th]; 
T. Hyodo, M. Niiyama, arXiv: 2010.07592 [hep-ph], to appear in PPNP

Two poles : superposition of two eigenstates
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NLO analysis confirms the two-pole structure.

 in meson-baryon scatteringΛ(1405)
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PDG has changed
2020 update of PDG

- “ ” is no longer at 1405 MeV but ~ 1420 MeV.Λ(1405)
- Lower pole: two-star resonance Λ(1380)

T. Hyodo, M. Niiyama, arXiv: 2010.07592 [hep-ph], to appear in PPNP
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Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

Λ(1405) 1/2− I (JP ) = 0(12
−) Status: ∗∗∗∗

In the 1998 Note on the Λ(1405) in PDG 98, R.H. Dalitz discussed
the S-shaped cusp behavior of the intensity at the N-K threshold ob-
served in THOMAS 73 and HEMINGWAY 85. He commented that
this behavior ”is characteristic of S-wave coupling; the other below
threshold hyperon, the Σ (1385), has no such threshold distortion
because its N-K coupling is P-wave. For Λ(1405) this asymmetry is

the sole direct evidence that JP = 1/2−.”

A recent measurement by the CLAS collaboration, MORIYA 14,

definitively established the long-assumed JP = 1/2− spin-parity
assignment of the Λ(1405). The experiment produced the
Λ(1405) spin-polarized in the photoproduction process γ p →

K+Λ(1405) and measured the decay of the Λ(1405)(polarized) →

Σ+ (polarized)π−. The observed isotropic decay of Λ(1405) is
consistent with spin J = 1/2. The polarization transfer to the

Σ+(polarized) direction revealed negative parity, and thus estab-

lished JP = 1/2−.

See the related review(s):
Pole Structure of the Λ(1405) Region

Λ(1405) POLE POSITIONΛ(1405) POLE POSITIONΛ(1405) POLE POSITIONΛ(1405) POLE POSITION

REAL PARTREAL PARTREAL PARTREAL PART
VALUE (MeV) DOCUMENT ID TECN

• • • We do not use the following data for averages, fits, limits, etc. • • •

1429+ 8
− 7

1 MAI 15 DPWA

1434± 2 2 MAI 15 DPWA

1421+ 3
− 2 GUO 13 DPWA

1424+ 7
−23 IKEDA 12 DPWA

1Solution number 4.
2 Solution number 2.

−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART
VALUE (MeV) DOCUMENT ID TECN

• • • We do not use the following data for averages, fits, limits, etc. • • •

24+ 4
− 6

1 MAI 15 DPWA

20+ 4
− 2

2 MAI 15 DPWA

38+16
−10 GUO 13 DPWA

52+ 6
−28 IKEDA 12 DPWA

1Solution number 4.
2 Solution number 2.

HTTP://PDG.LBL.GOV Page 1 Created: 6/1/2020 08:30

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

Λ(1380) 1/2− JP = 1
2
− Status: ∗∗

OMITTED FROM SUMMARY TABLE
See the related review on ”Pole Structure of the Λ(1405) Region.”

Λ(1380) POLE POSITIONΛ(1380) POLE POSITIONΛ(1380) POLE POSITIONΛ(1380) POLE POSITION

REAL PARTREAL PARTREAL PARTREAL PART
VALUE (MeV) DOCUMENT ID TECN

• • • We do not use the following data for averages, fits, limits, etc. • • •

1325±15 1 MAI 15 DPWA

1330+ 4
− 5

2 MAI 15 DPWA

1388± 9 GUO 13 DPWA

1381+18
− 6 IKEDA 12 DPWA

1Solution number 4.
2 Solution number 2.

−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART
VALUE (MeV) DOCUMENT ID TECN

• • • We do not use the following data for averages, fits, limits, etc. • • •

180+24
−36

1 MAI 15 DPWA

112+34
−22

2 MAI 15 DPWA

228+48
−50 GUO 13 DPWA

162+38
−16 IKEDA 12 DPWA

1Solution number 4.
2 Solution number 2.

Λ(1380) REFERENCESΛ(1380) REFERENCESΛ(1380) REFERENCESΛ(1380) REFERENCES

MAI 15 EPJ A51 30 M. Mai, U.-G. Meissner (BONN, JULI)
GUO 13 PR C87 035202 Z.-H. Guo, J. Oller
IKEDA 12 NP A881 98 Y. Ikeda, T. Hyodo, W. Weise (MUNT, RIKEN, TINT)

HTTP://PDG.LBL.GOV Page 1 Created: 6/1/2020 08:31

new!

- Particle Listing section:

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012); 
Z.H. Guo, J.A. Oller, PRC87, 035202 (2013);
M. Mai, U.G. Meißner, EPJA51, 30 (2015)

 in meson-baryon scatteringΛ(1405)
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Construction of  potentialsK̄N

Local  potential is useful for various applicationsK̄N

 potentials and their applicationsK̄N

meson-baryon amplitude 
(chiral SU(3) EFT)

K. Miyahara. T. Hyodo, PRC 93, 015201 (2016)

Coupled-channel real 
 potentialK̄N πΣ πΛ

K. Miyahara, T. Hyodo, W. Weise, PRC 98, 025201 (2018)

Kaonic nuclei

Single-channel complex 
 potentialK̄N

Kaonic deuterium

 correlation functionK−p
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Kaonic nuclei
Rigorous few-body approach to  nuclear systemsK̄

S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, PRC95, 065202 (2017).

- Stochastic variational method with correlated gaussians

- quasi-bound state below the lowest threshold
- decay width (without multi-  absorption) ~ binding energyN

Results for kaonic nuclei with A = 2, 3, 4, 6

K̅NN K̅NNN K̅NNNN K̅NNNNNN
B [MeV] 25-28 45-50 68-76 70-81
Γ [MeV] 31-59 26-70 28-74 24-76

(single channel)

 potentials and their applicationsK̄N

̂V = ̂VK̄N(Kyoto K̄N ) + ̂VNN(AV4′ )
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Interplay between  and  correlations 1NN K̄N

Two-nucleon system

N N

 1S0(INN = 1) 3S1(INN = 0)

N N

K̄

N N

N

N
K̄

bound ( ) dunbound 

 potentials and their applicationsK̄N

 correlation  correlation (also in )NN < K̄N A = 6

(quasi-)bound unbound
Λ(1405)

K̄N(I = 0)
K̄N(I = 1)

= 3
K̄N(I = 0)
K̄N(I = 1)

=
1
3



| K̄NNNN⟩ = C1 + C2

14

Interplay between  and  correlations 2NN K̄N

Four-nucleon system with JP = 0−, I = 1/2, I3 = + 1/2

 correlation  correlationNN > K̄N

-  correlationK̄N

-  correlationNN

 forms  : ppnn α |C1 |2 < |C2 |2

 pair in  (3 pairs) or  (2 pairs) : I = 0 K−p K̄0n |C1 |2 > |C2 |2

- Numerical result

p p

n n

p p

p n
K̄0K−

 potentials and their applicationsK̄N

|C1 |2 = 0.08, |C2 |2 = 0.92
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Kaonic deuterium: background
 system with strong + Coulomb interactionK−pn

p

n

 - Experiments are planned at J-PARC E57, SIDDHARTA-2 

K− fm𝒪(1)

 fm𝒪(100)

 potentials and their applicationsK̄N

Shift-width of the  state:1S

CONSTRAINING THE K̄N INTERACTION FROM THE . . . PHYSICAL REVIEW C 96, 045204 (2017)

TABLE VI. Level shift and width of kaonic hydrogen obtained
by solving the Schrödinger equation with the Kyoto K̄N potential
and by using the improved Deser formula and its resummed version.

!E (eV) " (eV)

Full Schrödinger equation 283 607
Improved Deser formula (18) 293 596
Resummed formula (19) 284 605

Estimates of the level shift and width of kaonic deuterium
using the Deser formulas require the K−d scattering length
aK−d as input. In the fixed center approximation (FCA) for
the nucleons, aK−d derived from a multiple scattering series is
given as [43,62]

aK−d = µK−d

mK−

∫
d3r ρd (r) ãK−d (r), (20)

ãK−d (r) =
ãp + ãn +

(
2ãpãn − ã2

ex

)/
r − 2ã2

exãn

/
r2

1 − ãpãn

/
r2 + ã2

exãn

/
r3

, (21)

with the K−-deuteron reduced mass µK−d , and ρd (r) is the
nucleon density distribution in the deuteron, obtained in the
present case using the Minnesota potential. The scattering
lengths are defined as ãp ≡ ãK−p, ãn ≡ ãK−n and ã2

ex ≡
ã2

K−p-K̄0n
/(1 + ãK̄0n/r), and the scattering lengths ãK̄N in

the laboratory frame are given as ãK̄N ≡ mK

µK̄N
aK̄N with the

K̄N reduced mass µK̄N . Using the Kyoto K̄N potential,
the resulting two-body K̄N scattering lengths are shown in
Table II. These scattering lengths are defined by the scattering
amplitudes at the threshold energy for the diagonal channels
and at the average of the threshold energies for the off-diagonal
K−p-K̄0n channel. Their real and imaginary parts agree well
with the original amplitudes [33,34] within their uncertainties.
The K−d scattering length is then calculated from Eqs. (20)
and (21) as

aK−d = (−1.42 + i 1.60) fm. (22)

This result remains unchanged when we adopt a realistic
deuteron wave function (including the D-wave component)
generated from the CD-Bonn potential [51].

Next we apply the improved Deser formulas (18) and
(19) to kaonic deuterium. The results are summarized in
Table VII together with those from the full three-body
calculation. The logarithmic correction term is now increased
as |µK−d aK−d/(µK−p aK−p)| ∼ 1.3, so the difference between
Eqs. (18) and (19) becomes larger than that in kaonic hydrogen.

TABLE VII. Level shift and width of kaonic deuterium obtained
by solving the three-body Schrödinger equation with the Kyoto K̄N

potential and by using the improved Deser formula and its resummed
version.

!E (eV) " (eV)

Full Schrödinger equation 670 1016
Improved Deser formula (18) 910 989
Resummed formula (19) 818 1188

In addition, the deviation from the full three-body calculation
is of the order of !100 eV.

Note, however, that the K−d scattering length in Eq. (22) is
estimated in the FCA limit. Hence, it can be different from the
exact value. For instance, the importance of recoil corrections,
naturally included in the full three-body calculation but
neglected in FCA, is discussed in Refs. [61,63]. In addition,
the determination of the precise energy of the two-body K̄N
system is subject to some uncertainties.

Another source of small deviations are higher order QED
corrections such as electron vacuum polarization. This effect
can be included as an effective potential, modifying the
Coulomb interaction in the form [64]

V (r) = −α

r

[

1 + 2α

3π

∫ ∞

1
due−2meru

(
1 + 1

2u2

)√
u2 − 1
u2

]

,

where me is the electron mass. The first term is the ordinary
Coulomb potential, and the second term (the Uehling potential)
takes into account the vacuum polarization effect, which is
found to be small: The 1S level shift and width of the kaonic
deuterium including this correction is !E − i"/2 = (670 −
i 519) eV. While the level shift is unchanged, the decay width
increases slightly by about 10 eV because the Uehling potential
is attractive at very short distances.

In summary, the improved Deser formulas work well for
kaonic hydrogen but estimates based on these formulas appear
to be less accurate for kaonic deuterium, which does require
a three-body treatment beyond fixed nucleons if the aim is to
reach a precision at the 10-eV level.

At this point, we can add a comment on the previously
mentioned surprising fact that isospin-breaking effects, using
physical masses of antikaons and nucleons, are large in kaonic
hydrogen but turn out to be small in the full three-body cal-
culation of kaonic deuterium. One can trace this phenomenon
by examining the improved Deser formulas together with the
multiple scattering relation (21). The prime source of the strong
effect in kaonic hydrogen is a substantial change of the real
part of the K−p scattering length when using isospin-averaged
instead of physical masses. In kaonic deuterium, on the other
hand, the whole set of scattering lengths in Table II enters
Eq. (21), including aK−n with its positive real part, so that
the leading effect from aK−p is largely compensated. As a
consequence, real parts of aK−d calculated with physical or
isospin-averaged masses now differ only by less than 5 %, and
this difference is averaged out further in the full three-body
approach beyond fixed-scatterer approximation.

Finally we examine possible uncertainties related to the
energy dependence of the K̄N potential, V̂ K̄N (EK̄N ). In the
present study, we have set EK̄N = 0 at threshold, following
Refs. [13,14,19]. The binding of the nucleons in the deuteron
may cause a shift of EK̄N toward the subthreshold region.
In fact, the prescription in Ref. [17] gives a large negative
value for EK̄N . Our estimate, derived and discussed in the
appendix, suggests instead a small average shift, EK̄N =
−Bd/2 ∼ −1.1 MeV, involving the deuteron binding energy
Bd . With this value, we calculate the level shift and width
of kaonic deuterium using the resummed Deser formula (19)
and find (!E,") = (869,1310) eV, compared to (!E,") =

045204-7

- Deser-type formula does not work accurately for K−d

c.f.) J. Revai, PRC 94, 054001 (2016)

ΔE − iΓ/2 = (670 − i508) eV
T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)
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 dependenceI = 1

Study sensitivity to  interactionI = 1
- introduce parameter  to control the potential strengthβ

(negative  may contradict with scattering data)β

HOSHINO, OHNISHI, HORIUCHI, HYODO, AND WEISE PHYSICAL REVIEW C 96, 045204 (2017)

TABLE IV. Energy spectrum of kaonic deuterium. Three- and two-body calculations with Coulomb
interaction only (omitting the strong K̄N interaction) are listed in the first three rows. Energy levels
resulting from the three-body calculation are measured relative to the calculated K−d threshold. For the
K−d two-body calculations, the deuteron mass Md = 1875.613 MeV has been used [49].

E1S(keV) E2P (keV) E2S(keV)

Coulomb −10.398 −2.602 −2.600
Uniform charge (2-body) −10.401 −2.602 −2.601
Point charge (2-body) −10.406 −2.602 −2.602
Coulomb + K̄N −9.736 − i 0.508 −2.602 − i 0.000 −2.517 − i 0.067

Brookhaven with K− stopped on liquid deuterium in the BNL
bubble chamber [59] demonstrated that these processes are
strongly suppressed as compared to the leading single-nucleon
channels, K̄N → πY . The ratio of two-nucleon absorption
reactions to the single-nucleon processes was found to be as
small as (1.2 ± 0.1)% [59]. Taking this value for orientation,
the kaonic deuterium 1S width would increase through
two-nucleon absorption by only about 10 eV, a correction
that can be safely neglected within an uncertainty range of
approximately 10 % assigned to the calculated width of about
a keV. The smallness of the two-body absorptive width can
be understood as follows. Kinematical conditions for the
K̄NN → YN process require a large momentum transfer of
order 1 GeV/c to be provided by the initial deuteron wave
function at short distances. The probability for this to take
place in a weakly bound, dilute system like the deuteron is
small. Similar considerations hold, for example, in the analysis
of the 3He(K−,"p)n reaction [30]. Background simulations
performed for this experiment pointed out that two-nucleon
absorption is strongly suppressed in the vicinity of the K−pp
threshold, whereas three-nucleon reactions dominate.

B. Constraining the I = 1 component of K̄ N interaction

To quantify the sensitivity of the kaonic deuterium level
shift with respect to the I = 1 component of the K̄N
interaction, we vary its strength within the uncertainties of
the SIDDHARTA kaonic hydrogen measurement [31,32]. This
uncertainty range can be simulated by simply multiplying a
constant, β, to the real part of the I = 1 component of the
K̄N potential. Within the SIDDHARTA constraint [31,32], the
control parameter β can range from −0.17 to 1.08. Evidently
this constraint is quite weak: Even β = 0, i.e., a vanishing
real part of the I = 1 K̄N potential, would still be acceptable.
Theoretical considerations based on chiral SU(3) dynamics
would exclude such a possibility, but it cannot be ruled out by
just looking at the SIDDHARTA data.

Table V lists the results of the two- and three-body
calculations performed with limiting values of β compared
to the standard case, β = 1. It is interesting to observe that the
sensitivity with respect to the I = 1 K̄N interaction strength
shows different patterns for $E and % in kaonic hydrogen as
compared to kaonic deuterium. In the K−p system, a variation
of β within its upper and lower limits changes $E by less than
10%, whereas % changes by more than 30%. On the other hand,
the same variation of β in the K−pn system induces a change
$E by 170 eV while % remains stable around 1 keV.

One concludes that an accuracy of about 25% in a
measurement of the 1S shift in kaonic deuterium would already
improve the determination of the I = 1 K̄N interaction
considerably over the kaonic hydrogen result. The 30–60 eV
precision to be expected in the planned experiments [37,38]
falls well within that range.

C. Improved Deser formulas for kaonic deuterium

The improved Deser formula [43,60], derived from nonrel-
ativistic effective field theory (EFT), is frequently used in the
investigation of strong-interaction effects in hadronic atoms.
The 1S level shift $E and width % of a kaonic atom can be
estimated by the relation [43,60]

$E − i%

2
= −2µ2α3a[1 − 2µα(ln α − 1)a], (18)

where µ is the kaon-nucleus reduced mass, α is the fine struc-
ture constant, and a is the K−-nucleus scattering length. The
logarithmically enhanced correction term can be resummed to
all orders [61], providing a “double-improved” Deser formula:

$E − i%

2
= − 2µ2α3a

1 + 2µα(ln α − 1)a
. (19)

In this section, we compare our full three-body calculation
results with the results obtained from Eqs. (18) and (19). But let
us first examine the shift and width of kaonic hydrogen in this
context. The K−p scattering length obtained by solving the
two-body Schrödinger equation with the Kyoto K̄N potential
is shown in Table II. Using Eqs. (18) and (19), one finds the
results shown in Table VI. It is evident that the improved Deser
formula works reasonably well for kaonic hydrogen and the
resummed version indeed improves the accuracy further.

TABLE V. Level shifts and decay widths (in eV) of
kaonic hydrogen and deuterium computed with different I =
1 strengths of the K̄N interaction. The experimental level
shift data of kaonic hydrogen is ($E,%) = (283 ± 36 ± 6,
541 ± 89 ± 22) eV [31,32].

β K−p K−d

$E % $E %

1.08 287 648 676 1020
1.00 283 607 670 1016
−0.17 310 430 506 980
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the transport code used in the simulation from GEANT3 [48]
to GEANT4 [49].
The effects related to momentum resolution effects are

accounted for by correcting the theoretical correlation
function, similarly to what shown in Refs. [33] and [41].
The theoretical correlation function Cðk"Þtheoretical depends
not only on the interaction between particles, but also on
the profile and the size of the particle emitting source.
Under the assumption that there is a common Gaussian
source for all particle pairs produced in pp collisions at a
fixed energy, the size of the source considered in the present
analysis is fixed from the baryon-baryon analyses described
in Refs. [33] and [41]. The impact of strongly decaying
resonances (mainly K" decaying into K and Δ decaying
into p) on the determination of the radius for Kp pairs was
studied using different Monte Carlo simulations [45,46]
and found to be 10%. This contribution was linearly added
to the systematic uncertainty associated with the radius.
The radii of the considered Gaussian sources are r0 ¼
1.13% 0.02þ0.17

−0.15 fm [33] for collisions at
ffiffiffi
s

p
¼ 5 and

7 TeV, and r0 ¼ 1.18% 0.01% 0.12 fm [41] for the
ffiffiffi
s

p
¼

13 TeV collisions.
The comparison of the measured Cðk"Þ for same-charge

Kp pairs with different models is shown in Fig. 1. Each
panel presents the results at different collision energy and
the comparison with two different scenarios. The blue band
represents the correlation function evaluated as described in
Eq. (1), assuming only the presence of the Coulomb
potential to evaluate the Cðk"Þtheoretical term. The red band
represents the correlation function assuming the strong
potential implemented in the Jülich model [50] in addition
to the Coulomb potential. The latter has been implemented

using the Gamow factor [51]. In the bottom panels, the
difference between data and model evaluated in the middle
of each k" interval, and divided by statistical error of data
for the three considered collision energies are shown. The
width of the bands represents the n-σ range associated to
the model variations. The reduced χ2 are also shown. This
comparison reveals that the Coulomb interaction is not able
to describe the data points, as expected, while the intro-
duction of a strong potential allows us to reproduce
consistently the data when the same source radius as for
baryon-baryon pairs is considered. Hence, the measured
correlation functions are sensitive to the strong interaction
and can be used to test different strong potentials for the
K−p system, assuming a common source for all the Kp
pairs produced in a collision.
Similar to Fig. 1 for like-sign pairs, Fig. 2 shows the

data-model comparison for unlike-sign pairs. The measured
Cðk"Þ is reported for the three different collision energies
and the Cðk"Þ distributions were compared with different
interaction models. Since all the models considered in this
Letter do not take the presence of Λð1520Þ into account,
only the region below 170 MeV=c is considered in the
comparison. The blue bands show results obtained using
CATS with a Coulomb potential only.
The remaining curves include, on top of the Coulomb

attraction, different descriptions of the K̄N strong inter-
action. The width of each band accounts for the uncer-
tainties in the λ parameters, the source radius and the
baseline. The light blue bands corresponds to the Kyoto
model calculations with approximate boundary conditions
on the K−p wave function which neglect the contributions
from Σπ and Λπ coupled channels [26,52–55]. Moreover,
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FIG. 2. (K−p ⊕ Kþp̄) correlation functions obtained (from left to right) from pp collisions at
ffiffiffi
s

p
¼ 5, 7, 13 TeV. The fourth panel

shows the combined results at the three colliding energies; the number of pairs in each data sample has been used as weight. The inset
shows the correlation function evaluated for pp collisions at

ffiffiffi
s

p
¼ 5 TeV in a wider k" interval. The measurement is presented by the

black markers; the vertical lines and the boxes represent the statistical and systematic uncertainties, respectively. Bottom panels
represent comparison with models as described in the text.
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New data :  correlation functionK−p

 total cross sectionsK−p

—> important constraint on  theoriesΛ(1405)

- Old bubble chamber data

- Excellent precision (  cusp)K̄0n

Y. Ikeda et al. / Physics Letters B 706 (2011) 63–67 65

Fig. 2. Calculated K − p elastic, charge exchange and strangeness exchange cross sections as function of K − laboratory momentum, compared with experimental data [12].
The solid curves represent best fits of the full NLO calculations to the complete data base including threshold observables. The shaded uncertainty bands are explained in
the text.

with the K −p reduced mass, µr = mK M p/(mK + M p), and includ-
ing important second order corrections [6]. We use the accurate
SIDDHARTA measurements [10]:

!E = 283 ± 36(stat) ± 6(syst) eV,

Γ = 541 ± 89(stat) ± 22(syst) eV.

The available data base is completed by the collection of (less
accurate) scattering cross sections [12] (see Fig. 2). We do not in-
clude measured πΣ mass spectra in the fitting procedure itself but
rather generate them as “predictions” from our coupled-channels
calculations.

4. Results and discussion

Using the unitary coupled-channels method just described, the
basic aim of the present work is to establish a much improved
input set for chiral SU(3) dynamics, by systematic comparison
with a variety of empirical data and with special focus on the
new constraints provided by the recent kaonic hydrogen measure-
ments [10]. A detailed uncertainty analysis is performed. It will be

demonstrated that previous uncertainty measures [7,9] can be re-
duced considerably.

We have carried out χ2 fits to the empirical data set in several
consecutive steps: first starting with the leading order (TW) terms,
then adding direct and crossed Born terms, and finally using the
complete NLO effective Lagrangian. The results are summarized in
Table 1. All calculations have been performed using empirical me-
son and baryon masses. This implies in particular that those parts
of the NLO parameters b0,bD and bF responsible for shifting the
baryon octet masses from their chiral limit, M0, to their physi-
cal values, are already taken care of. The remaining renormalized
parameters, denoted by b̄0, b̄D and b̄F , are then expected to be
considerably smaller in magnitude than the ones usually quoted in
tree-level chiral perturbation theory. Similar renormalization argu-
ments imply that the pseudoscalar meson decay constants should
be chosen at or close to their physical values [13],

fπ = 92.4 MeV, f K = (1.19 ± 0.01) fπ ,

fη = (1.30 ± 0.05) fπ . (11)

It turns out that best fit results can indeed be achieved with these
physical decay constants as inputs. This is a non-trivial obser-

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011)
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Prediction from chiral SU(3) dynamics
Theoretical calculation of C(q)

- wave function  : coupled-channel  potentialΨ(−)
q (r) K̄N-πΣ-πΛ

C(q) ≃ ∫ d3r S(r) |Ψ(−)
q (r) |2

- source function  : determined by  dataS(r) K+p

Correlation function is well reproduced.

small and the correlation function is not very sensitive to
ωπ0Λ, the effects of πΣ channels are important because of
the strong K̄N − πΣ coupling. Then we fix ωπ0Λ ¼ 1 and
vary the parameter ωπΣ around the reference value,
obtained by the simplest statistical model estimate [34],
ωðstatÞ
πΣ ≃ exp½ðmK þmN −mπ −mΣÞ=Tc& ≃ 2.0 with Tc ¼

154 MeV [35,36]. As for the source size, the ALICE
collaboration fixed R ¼ 1.18 fm by assuming the same
source size as that of Kþp, which was obtained by the
femtoscopic correlation fit based on the Jülich Kþp
interaction [25], with Coulomb effects treated by the
Gamow factor correction. Although this correction
describes the Coulomb effect well for light systems such
as π − π, it lacks the necessary accuracy for heavier
systems [32]. Thus, we also consider the variation of R
in the fitting procedure. While the source size can in
principle be channel dependent, possible size differences
between channels can be compensated by varying the
source weights. We therefore use a common source size
in K̄N, πΣ, and πΛ channels. We also assume that the
source function has a Gaussian shape and the source weight
is isospin symmetric.
The measured correlation function is assumed to be

described in the form [20]

CfitðqÞ ¼ N ½1þ λfCðqÞ − 1g&; ð8Þ

whereN is a normalization constant and λ is the pair purity
parameter, known also as the chaoticity parameter. The pair
purity parameter is experimentally determined through a
Monte Carlo simulation, λexp ¼ 0.64' 0.06, so we allow
for variations of λ within 1σ. We fit the correlation function
data in the momentum range q < 120 MeV=c, where the
distortion of the s wave is considered to give the dominant
contribution.
In Fig. 2 the χ2=d:o:f: distribution is plotted in the

ðR;ωπΣÞ plane. A good fit (χ2=d:o:f:≲ 1) is achieved in the

region from ðR;ωπΣÞ ¼ ð0.6 fm; 0Þ to ð1.1 fm; 5.0Þ. The
source size R ≃ 1 fm is reasonable for pp collisions, while
ωπΣ should be consistent with the simple statistical model
estimate within a factor of 2 to 3. Thus, we consider
parameter sets in this region with 0.5 ≤ ωπΣ ≤ 5 as equally
acceptable. On the other hand, if we take the R ¼ 1.18 fm
as adopted by the ALICE Collaboration, ωπΣ ≳ 8 gives a
good fit, but such large ωπΣ values appear to be signifi-
cantly beyond the statistical model estimate.
Figure 3 shows the fitted K−p correlation function

with R ¼ 0.9 fm as an example of a result satisfying
χ2=d:o:f: < 1. The other parameters are chosen as

ωπΣ ¼ 2.95; N ¼ 1.13; λ ¼ 0.58; ð9Þ

to give the minimum value of χ2=d:o:f: ¼ 0.58. The
enhancement in the low-momentum range and the char-
acteristic cusp structure are evidently well reproduced.
Recalling the importance of the πΣ component in the K−p
correlation as shown in Fig. 1, the sizable value of ωπΣ
indicates that the contribution from the πΣ source is
essential to reproduce the data.
The peak structure seen in Fig. 3 around q ∼ 240 MeV=c

represents the Λð1520Þ resonance. The contribution from
this resonance can be simulated by a Breit-Wigner func-
tion:

CresðqÞ ¼
bΓ2

ðq2=2μK−p þmp þmK− − ERÞ2 þ Γ2=4
; ð10Þ

with parameters b, ER, and Γ. We can isolate the resonance
by subtracting CfitðqÞ from the correlation data, using the
parameters of Eq. (9) and R ¼ 0.9 fm. The remaining
structure in the interval 150 MeV=c < q < 300 MeV=c is

FIG. 2. Reduced χ2 distribution in the ðR;ωπΣÞ plane. From
inward out the contour lines correspond to χ2=d:o:f: ¼ 0.5, 1,
1.5, and 2, respectively.

FIG. 3. Correlation function with the best fit parameters (solid
line). The result including the Λð1520Þ contribution is shown by
the dotted line. The dashed line shows the prediction with
R ¼ 1.6 fm. Its shaded area shows the uncertainty with respect
to the variation of ωπΣ. For comparison, we also plot the
corresponding area for the case with R ¼ 0.9 fm. The ALICE
data set is taken from Ref. [20].
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Pole structure of the  region is now well 
constrained by the experimental data.        
“ ” —>  and 
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