

Una breve introduzione alla Fisica della Particelle

John Walsh INFN Sezione di Pisa International Masterclass, 1 Marzo 2021

INFN Istituto Nazionale di Fisica Nucleare

Scopo della fisica delle particelle

- Studiare (e capire!) l'universo al livello più fondamentale, più elementare
- Quali sono i costituenti della materia?

PARTICELLE ELEMENTARI

 Come si possono descrivere le interazioni tra questi costituenti?

Cercare gli oggetti più piccoli...

- Storicamente, lo studio del piccolo ha spesso portato grandi progressi nella nostra comprensione dell'universo
- Acceleratori di particelle – creare collisioni violente tra particelle per vedere che succede

Oggetti piccoli, oggetti grandi:

- Big Bang Theory: l'universo che vediamo oggi dipende fortemente dalle particelle create al Big Bang e le interazioni tra loro
- Queste particelle (raggi cosmici) continuano ad arrivare sulla Terra, dove gli scienziati le possano studiare
- Ma possiamo anche creare le particelle in laboratorio –
 Acceleratori di particelle

Creare le condizioni iniziali dell'universo: LHC

Le collisioni
 prodotte dal
 LHC creano le
 condizioni
 esistenti 10⁻¹⁰
 sec dopo il Big
 Bang

Teoria v. Esperimenti

Sperimentali: osservare i fenomeni previsti da teoria. Anche meglio: trovare qualcosa che non torna con le teorie esistenti.

Oggi siamo fisici sperimentali

Teorici: formulare modelli matematici che descrivono le particelle fondamentali e la loro interazioni. Una teoria dovrebbe predire fenomoni che possono essere osservati.

Teoria della fisica delle particelle

Modello Standard

- Descrive tutte le particelle fondamentali
- Descrive come le particelle interagiscono tra di loro tramite le forze fondamentali
- Sviluppato gradualmente nella seconda metà del secolo scorso
- Successo notevole: nessun risultato sperimentale fatto finora risulta incompatibile con le previsioni del Modello Standard

Le 17 particelle del Modello Standard

Materia

- Divise in quark, ۲ leptoni, bosoni
- Solo 3 particelle • (u,d,e) costituiscono la materia ordinaria
- Le altre 14 sono • esotiche, esistevano al tempo del Big Bang, oggi tipicamente solo in laboratorio
- Eccezioni: fotoni ۲ (particelle di luce) e neutrini (dappertutto, ma invisibili)

Le 4 forze fondamentali

Forza	Intensità relativa	Particelle coinvolte	Particella mediatrice	Esempio
Forte	1	quarks	gluone	forza nucleare
Elettro- magnetica	10-2	particelle cariche	fotone	forza magnetica
Debole	10-8	quarks & leptoni	bosoni W, Z	radio- attività
Gravità	10-39	particelle massive	gravitone	moto di una cometa
Incluse ne	l Modello	Standard		

A high-energy electron on collision course with ... a quark, confine in the proton. Elettromagnetica n → p e⁻ v_e Debole e O U **W**⁻ $\overline{\nu}_{e}$ 6 aturn's orb Halley's Comet's orbit (Period 76 yr) Gravità D 1910 and 1986 -Sun

(Not drawn to scale)

Forte

Collisioni ad alta energia

• Con collisioni violenti,

possiamo creare e studiare particelle che non si trovano normalmente nella natura

- Più alta l'energia della collisione, maggiore la massa delle particelle che possiamo creare:
 - Einstein: E=mc²
 l'energia dello scontro
 si trasforma in massa
 - Ciò ci permette di studiare particelle pesanti, come i bosoni Z e H
- E cercare particelle ancora non osservate

L'ultimo (?) pezzo del puzzle: Bosone di Higgs

ovvero: il problema di massa

La massa delle particelle ricopre 11 ordini di grandezza -

- Non c'è nessuna regolarità nei valori di massa delle particella elementari
- I neutrini sono molto leggeri
- L'elettrone è 350.000 volte più leggero del quark più pesante
- Tra i bosoni, il fotone è privo di massa, ma i bosoni W e Z pesano circa come 80-90 protoni

Ancora più grave...

- Nella versione originale del Modello Standard tutte le particelle avevano massa nulla (!)
- Tre fisici teorici hanno proposto un modo per conferire massa alle particelle: Higgs, Englert e Brout

Premio Nobel 2013

Meccanismo di Higgs

- Introduce un nuovo campo che permette le particelle di acquisire massa
- Più forte una particella interagisce con il campo maggiore è la sua massa

Conseguenza importante: prevede l'esistenza di una nuova particella: il bosone di Higgs

Però, nessuna previsione della massa della nuova particlla.

La caccia allo Higgs

- Lunga ricerca che è durata decenni
- In realtà, solo con LHC abbiamo avuto abbastanza energia per produrre tanti bosoni di Higgs
- Finalmente...

4 Luglio 2012: Scoperta dello Higgs a 2 esperimenti del LHC

 $H \rightarrow \gamma \gamma$

Adesso?

- L'ultima particella del Modello Standard trovata
- Ma rimangono tante domande:
 - quella delle masse diverse
 - i quark e leptoni sono elementari o sono composti da particelle più piccole?
 - perché 3 generazioni di quark e leptoni? Ci sono altre generazioni non ancora scoperte?
 - dove è andata l'antimateria?
 - di cos'è fatta la materia oscura?
 - e tante altre...

Anti-materia

Per ogni particella fondamentale esiste una corrispondente anti-particella, fatta quindi da anti-materia, con la stessa massa e le stesse proprietà, ma con carica elettrica opposta.

Anti-Matter

Si può creare in laboratorio: <u>Antimatter: Most Expensive Substance on Earth</u> Prezzo: \$62,500,000,000,000/gram

Simmetria Charge-Parity

In realtà, un piccolo squilibrio tra materia e anti-materia è previsto dal Modello Standard. Questo è dovuto alla violazione della Simmetria CP nella forza debole.

Un positrone (anti-elettrone) dovrebbe comportarsi esattamente come un elettrone ... se lo guardi in uno specchio (!).

> CP = Coniugazione di carica (inverte la carica) x Parità (inverte le coordinate come in uno specchio)

Però, questo fenomeno non è sufficiente a spiegare il perché l'universo sia fatto di materia e non di anti-materia. Deve esistere qualche nuova interazione che viola CP. 20

21 Marzo 2019: LHCb annuncia la scoperta di violazione di CP nella particella D⁰ – non si sa ancora se compatibile con il MS

Un'altra questione aperta: la Materia Oscura

- Solo ~5% dell'universo è visibili ai nostri telescopi e quindi ben compreso
- 24% dell'universo è fatto di materia oscura
- Evidenze di materia oscura: velocità angolare delle galassie, lente gravitazionale
- Ancora più misteriosa: energia scura – 71% dell'universo

Atoms

4.6%

Dark Matter 24% Dark

Energy 71.4%

Materia oscura: cosa potrebbe essere?

- Fatta di particelle neutre
- Non del Modello Standard
- Supersimmetria: estensione del Modello Standard: neutralini
 - cercati, ma non rivelati
 a LHC
- Tante altre proposte teoriche
- Questione ancora aperta

Large Hadron Collider (LHC)

Large Hadron Collider

- I protoni sono accelerati da potenti campi elettrici quasi alla velocità della luce. Sono guidati lungo le loro traiettorie circolari da potenti magneti dipoli supercoduttori.
- I magneti lavorano a 8.3 Tesla, (200.000 volte il campo magnetico terrestre) & 1.9 K (-271°C) in elio suferfluido.
- Consumo energetico di LHC: quanto una città come Firenze(!)
- I protoni viaggiano in un tubo che è a vuoto più spinto ed a temperatura più bassa che lo spazio interplanetario.

THE LARGE HADRON COLLIDER BY THE NUMBERS

IN RAW DATA GENERATED BY LHC EXPERIMENTS

OCCUR PER SECOND

1.9 KELVIN (-271.3 DEGREES CELSIUS) INTERNAL OPERATING TEMPERATURE

CERN'S OPENSTACK CLOUD ACROSS TWO DATA CENTERS

Esperimenti di fisica delle particelle

- Due strade:
 - mirare alle energie più alte: Energy Frontier
 - dà la possibilità di creare nuove particelle molto pesanti, come quark top, Higgs, nuove particelle di Supersimmetrie, ecc.
 - ATLAS, CMS, ALICE
 - mirare ad alta intensità: Intensity Frontier
 - studiare particelle di massa più bassa (per esempio, mesoni B, D)
 - fare misure di alta precisione che sono capaci di testare il Modello Standard molto accuratamente: fisica del flavour
 - LHCb

Major experiments

Per concludere...

 Studiamo la fisica delle particelle per capire l'universo al livello più fondamentale

2:51:53

- Nonostante il grande successo del Modello Standard nel corso degli ultimi 50 anni, ci sono ancora problemi fondamentale da risolvere. Due esempi
 - mancanza di anti-materia nell'universo
 - la composizione della materia oscura

 Gli esperimenti al LHC del CERN, tra cui anche LHCb, sono cruciali per questa ricerca.

backup slides...

Effetti collaterali felici: Spin-offs

- Gli esperimenti al CERN richiedono un altissimo livello di tecnologia → Spin-offs
 - avanze tecnologiche che sono utili al di fuori della ricerca. Alcuni esempi:
 - World Wide Web
 - Touchscreens
 - Tecnologie di imaging medico
 - Pannelli solari efficienti
 - •

Tanti modi per studiare il mondo

Major experiments

Revised and adapted by Antonella Del Rosso, ETT Div, in collaboration with B. Desforges, SL Div, and D. Manglunki, PS Div. CERN, 23.05.01