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Z» When it is okay to use machine learning?

When you can do without it:

* You can solve the problem without ML and you’re fine with the result
— Great!

No need to hammer nails with a microscope.

When your problem has many variables and you seek to improve
existing analysis, and even a small increase in performance is important

for you —it’s okay.




%R Dark matter and where to find it

* No one knows!

e Dark matter particle is a theoretical construction we use to explain
variety of observational facts.

 Why are we so confident that dark matter is real?

Distance Luminosity Mass Mass/Lum.
Objects (in kpc) (in sol. lum.) (in sol. mass) f
Solar Neighborhood — . — 4
Triangulum Nebula, M33 480 1.4 X 10° 5 X 10° 4
Large Magellanic Clou 44 1.2 X 10° 2 X 10° 2
Andromeda Nebula 460 9 X 10° 1.4 X 10" 16
Globular Cluster, Mg2 11 1.7 X 108 <8 X 10°% <5
Elliptical Galaxy, NGC 3115 2100 9 X 108 9 X 10" 100
Elliptical Galaxy, M32 460 1.1 X 108 2.5 X 10% 200
Average S in Double Gal. — 1.3 X 10° 7 X 101 50
Average E in Double Gal. —_ 8 X 108 2.6 X 10" 300
Average in Coma Cluster 25000 5 X 108 4 X 101 800
FIG. 1. A snapshot of the dark matter problem in the 1950s: the distance, mass, luminosity, and mass-to-light ratio of several galaxies

and clusters of galaxies. From Schwarzschild,

1954.

"% MILK" 1S 2% MILKFAT, BUT “WHOLE
MILK" 1ISN'T 100% MILKFAT—IT'S 3.5%.

I VEIRD WHAT'S THE REST OF IT?

ABOUT 27% IS DARK, MATTER.
THE REmlmER 15 DARK ENERGY.
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D. Hooper and G. Bertone “A history of dark matter”
arxiv:1605.04909

Dark matter
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Looks like Galaxies are immersed into Halo of dark matter
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Detection idea

PHYSICAL REVIEW D VOLUME 31, NUMBER 12 15 JUNE 1985

Detectability of certain dark-matter candidates

Mark W. Goodman and Edward Witten
Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544
(Received 7 January 1985)
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Hunt for the unseen
A whir, bubble, flash of light
Dark matter escapes
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Bright and Scalable

RATIO = N{singlet states}
{triplet states}
NUCLEAR RECOILS ELECTRON RECOILS
Art + Ar Ar* + Ar

This is the core property of liquid argon that

N Ar2+ « Singlet state allows Pulse Shape Discrimination
recombinatfion 4
e l
7/

Ar;  excited argon dimer
de~excifotion l N

2Ar + hv(128 nm)
UV light .



DEAP-3600 detector

DEAP-3600 is a single-phase liquid argon (LAr) direct-detection dark
matter experiment.

Location: 2km underground at SNOLAB (Sudbury, Canada).

Target: 3279 kg of LAr (30 cm of GAr on top) in a spherical acrylic vessel (AV)

Light detection: 255 PMTs connected to AV by 45 cm light guides (LGs).

Construction: Filling of the detector done through the neck with LN2 cooling coil.
AV and PMTs enclosed in stainless steel shell.

Shielding: Filler blocks (FB) between LGs used for thermal insulation and neutron
shielding. Steel shell is immersed in 300 tons of H20, viewed by 48 veto PMTs.
Neck of the detector has 4 Neck veto PMTs.

The DEAP Collaboration, Design and Construction of the DEAP-3600 Dark Matter 8

Detector, Astropart. Phys. 108, 1 (2019).



Data

* When event triggers the detector we get a lot of information coded into variables:
* Total amount of collected light — recoil energy
* Light and time patterns — position of the event
* Prompt fraction of light - pulse shape of the event
* Maximum fraction of light collected by PMTs
* Which PMTs were first to detect light
e And about 100 others

* Based on this events are identified as alphas, Cherenkov, cosmogenics etc. \\ _
* We can check how good we understand physics underneath with MC \‘..‘. ’ . ’,g
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The Neck

-lOW U ices
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e Largest contribution to the
background rate

* FGs are not coated with TPB

e Acrylic absorbs UV light

* “Shadowed” event topologies

(
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=+ Inner flowguide

(inner surface LAr)

Event selection:

* Upper Fprompt cut

e Early pulses in GAr PMTs
* Charge fraction in top 2 rows of PMTs

* Position reconstruction consistency cut

— Inner flowguide
(outer surface LAr)
Piston ring

Outer flowguide
(inner surface LAr)
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ML Routine

Need to classify something? You can never go wrong with
Boosted Decision Trees.

- Establish problem

- Decide on metrics (accuracy, signal acceptance, precision,
number of electrons per apple)

- Prepare dataset (in physics it is often relies on MC and takes
up to 70-80% of time)

- Select features
- Choose ML model (try not to overkill)

- Train\validate\test -> tune model (you can gain about 10% of
performance)

- Evaluate performance (calculate metrics and decide on
threshold)

- Make sure that it works as intended (e.g. opening black box)

- Deploy for large-scale analysis (this is where you test a lot)

11



Mitigating neck alphas

Ty ) (i) excluded energy estimators
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Inference and deployment

* What to do after you trained and tested you ML model? Put it to
operation.

.root with

scores

Hidden Technical Debt in Machine Learning Systems Uproot or Bt Control script
PyROOT root file
Machine
Resource Monitoring
Configuration Data Collection Manageinerit Serving i Scoring
- Infrastructure entries in
code Analysis Tools root file
SeEl Process
Extraction Management Tools
Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown Python or -Zippir)g
by the small black box in the middle. The required surrounding infrastructure is vast and complex. root file
root with scores
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Another application for ML — Position
reconstruction

 Position reconstruction is a classical regression problem

* It can be regarded as one of the Computer Vision problems — we can use Convolutional Neural
Networks!
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DarkSide-50
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In the double phase TPCs x-y position reconstruction

relies on S2 signal
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It’s all convoluted

Model converges after several epochs

Frefiminasy ’Ilmr:;aét!:ﬁ'l y position reconstruction
Very simple model already achieves reasonable results
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GO gle machine learning landscape X !/ Q

Q Al [ Images [E News [ Videos ¢ Shopping } More Settings  Tools

A | Itt | e b It | n fo r m a t I O n About 183,000,000 resuits (0.55 seconds)

(&) Images for machine learning landscape

« israel . - artificial intelligence = startup ~ automotive hardware v

* Kaggle.com

e https://www.kdnuggets.com/2017/04/top-20-papers-machine-
learning.html

* https://github.com/kjw0612/awesome-deep-vision

Harvard
Business
Review

Data Scientist: The Sexiest |
Job of the 21st Century
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