IDEA DR Calorimeter: readout electronics

On behalf of the IDEA Dual-Readout calorimeter collaboration

The R&D strategy

- □ The R&D planned for the next years has three main objectives:
 - Assess the EM performance of a dual-readout calorimeter module
 - Identify and test solutions at system level (i.e. mechanics/assembly, sensors, readout scheme, calibration etc.)
 - Demonstrate on beam the hadronic performance of the dual-readout technique

The R&D strategy

- □ The R&D planned for the next years has three main objectives:
 - Assess the EM performance of a dual-readout calorimeter module
 - Identify and test solutions at system level (i.e. mechanics/assembly, sensors, readout scheme, calibration etc.)
 - Demonstrate on beam the hadronic performance of the dual-readout technique
- To achieve these objectives we have a two-step plan:
 - Short-term plan: build and test on beam a module with EM shower containment (10x10x100 cm³) and a highly granular core (3.5x3.2x100 cm³) equipped with SiPMs
 - Mid-term plan: design, build & qualify on beam a scalable system with hadronic containment, partially equipped with SiPM for cost/performance optimisation

R. Santoro

- □ Status of the short-term plan (2021):
 - Test beam preparation (planned for spring and / or Autumn 2021)
- □ R&D for the mid-term plan (2022-2025):
 - New module design
 - New readout scheme

Test beam: mechanics and assembly

See Gabri's talk for details

$\blacksquare EM-prototype (10x10x100 cm^3)$

- □ 9 modules made of 16 x 20 capillaries (160 C and 160 Sc)
- Capillaries (brass): 2 mm outer diameter and 1.1 mm inner diameter
- EM-prototype readout
 - Each capillary of the central module is equipped with its own SiPM: highly granular readout
 - 8 surrounding modules equipped with PMTs (each module will use 1 PMT for C and 1 PMT for Sc fibres)

- Capillaries have been produced by Albion Alloys and the quality was in line with the specification: OD 2.0 (+ 0.1 / 0.0) mm, ID 1.1 (+ 0.1 / 0.0) mm
- The inner diameter is defined by the fibres but the outer diameter can be either increased or reduced (performance has to be carefully evaluated)
- Even if there are alternatives under study, this option could be considered almost ready for large production

FEE – Boards 5 Boards (320 SiPMs)

RD_FCC collaboration meeting - 16-17 February 2021

IDIC

- The readout of the PMTs will is on Caen QDC (V862AC) and TDC (V775N) modules
- The readout of the highly granular module (320 SiPMs) is based on the Caen FERS system (5200) using 5 readout boards (A5202)

FERS-system

- FERS unit can be used in standalone or connected to the system
- Up to 16 FERS units can be connected in daisy chain (FERSnet)
- The FERSnet communicates to the concentrator board DT5215 via TDlink (6.25 Gbit/s) optical link
- A DT5215 houses 8 high-speed optical links (TDLink) to read out up to 8192 channels (SiPMs)
- The DT5215 has an embedded ARM processor (Quad Core) running Linux for data processing / data compression
- The connection to the host PC is performed over a 10 Gbit ethernet
- Further scalability can be reached synchronizing more concentrator boards

- The readout of the PMTs will is on Caen QDC (V792AC) and TDC (V775N) modules \Box
- The readout of the highly granular module (320 SiPMs) is based on the Caen FERS system (5200) using 5 readout boards (A5202)

- □ The readout of the PMTs will is on Caen QDC (V792AC) and TDC (V775N) modules
- The readout of the highly granular module (320 SiPMs) is based on the Caen FERS system (5200) using 5 readout boards (A5202)

RD_FCC collaboration meeting - 16-17 February 2021

CITIROC 1A: specification

Detector Read-Out		SiPM, SiPM array					
Number of Channels			32				
Signal Polarity			Positive				
Sensitivity			Trigger on 1/3 of photo-electron				
Timing Resolution			Better than 100 ps RMS on single photo-electron				
Dynamic Range			0-400 pC i.e. 2500 photo-electrons @ 10 ⁶ SIPM gain				
Packaging & Dimension			TQFP160-TFBGA353				
Power Consumption			225mW - Supply voltage: 3.3V				
Inputs 3			2 voltage inputs with independent SiPM HV adjustme			independent SiPM HV adjustments	
SA/		Outputs		32 digital outputs (for timing)2 multiplexed charge output, 1 multiplexed hitregister and 2 trigger outputs			
		Ŷ	eeroc	Ir P: Fe	nternal rogram. eatures	32 HV adjustment for SiPM (32x8bits), Trigger Threshold Adjustment, channel by channel gain tuning, 32 Trigger Masks, Trigger Latch, internal temperature sensor	

- The readout of the PMTs will is on Caen QDC (V792AC) and TDC (V775N) modules
- The readout of the highly granular module (320 SiPMs) is based on the Caen FERS system (5200) using 5 readout boards (A5202)

RD_FCC collaboration meeting - 16-17 February 2021

CITIROC 1A: block diagram

https://www.weeroc.com/my-weeroc/downloadcenter/citiroc-1a/16-citiroc1a-datasheet-v2-5/file

Trigger Strategy

□ The trigger is based on a majority logic at FERS (A5202) level

- The majority is based on 64 Fast Shaper signals (1 per SiPM)
- The threshold on the discriminator can be set at the level of single ph-e
- The majority signal activates the peak-search to measure the amplitude for all the SiPMs in the FERS
- The trigger from the test beam ancillary detectors is used as eventaccept signal
- The Data concentrator synchronizes the FERS and makes the event building

Timing Information

- Each FERS has 2 TDCs with high resolution (LSB=50 ps) and 64 TDCs (LowRes) coded on FPGA (LSB=500 ps)
- □ The LowRes TDCs can be used to measure:
 - The ToT for each SiPM
 - The ToA for each SiPM wrt the event-accept
- Two signals / FERS can be measured with HighRes TDCs: different options are possible:
 - □ 1st option: majority and OR wrt the event-accept signal
 - □ 2nd option: majority (cherekov) and majority (sc) wrt the event-accept signal
 - □ 3rd option: OR (cherekov) and OR (sc) wrt the event-accept signal

Hamamatsu SiPM: S14160-1315PS Cell size = $15\mu m$

Staircase: Ch 26

IDIC

CitiroclA: qualification

STUDIORIZA ZENERAL ZENERAL ZENERAL ZENERAL ZENERAL

Measurement performed with the DT5550W evaluation board

4000 12000 Fitted Curve 10500 3500 with SiPM 3000 9000 2500 2000 1500 Channel 7500 6000 G ADC 4500 Measured 1000 3000 Trend compatible with the intrinsic 500 1500 non-linearity of the SiPM 0 0 6000 0 2000 4000 8000 10000 12000 Photoelectrons (PMT)

Dyn-range measured with the S14160-1315PS

RD_FCC collaboration meeting - 16-17 February 2021

CitiroclA: qualification

Measurement performed with the DT5550W evaluation board

11DIC

4000 12000 Fitted Curve 10500 3500 with SiPM 9000 3000 2500 2000 1500 Channel 7500 6000 G ADC 4500 Measured 1000 3000 Trend compatible with the intrinsic 500 1500 non-linearity of the SiPM 0 0 2000 4000 6000 8000 10000 12000 Photoelectrons (PMT) RD_FCC collaboration meeting - 16-17

February 2021

Linearity qualified with the detector emulator (DT5810 - Caen)

Dyn-range measured with the S14160-1315PS

Status of the short-term plan (2021): Test beam preparation (planned for spring and / or Autumn 2021)

□ R&D for the mid-term plan (2022-2025):

- New module design
- New readout scheme

New module design

For the new design we are investigating scalable options which would guarantee the possibility to build large and projective modules.

Option based on capillaries

The SiPMs will be directly connected to the fibres and fixed to the absorber

This option will allow to group signals from 8 SiPMs to reduce the number of channels to be read out

Readout scheme: an alternative approach

We are also considering waveform sampler ASICS with feature extraction

The SiREAD

https://indico.bnl.gov/event/6351/contributions/29462/attachments/23682/34356/190709_Nalu_Scientific_-_Electronics_Update_for_EIC-PID_workshop_for_web.pdf

- Produced by Nalu Scientific
- The SiREAD has been replaced by new ASICS (HDSOC, ASOC)
- This year we should receive a demo board for preliminary tests and qualification

Do we really want to be analogue?

https://indico.cern.ch/event/192695/contributions/353376/attachments/277251/387863/TIPP2014_Amsterdam_lecture_Philips_Haemisch_pub.pdf

- The technology is not yet consolidated and the performance is not yet at the level of the SiPMs. Nevertheless they are rapidly improving
- This R&D could bring to a series of advantages:
 - Custom sensor design with reduced cost for mass production
 - Simplified readout system
 - Improved timing performance
 - The non-linearity could be corrected before merging the information from different sensors

Interesting review: NIM-A, 809 (2016), 31-52 R. Santoro

Do we really want to be analogue?

Readout System R&D (in Korea)

DRS chip

DRS chip can help us to reach our R&D goals of readout system.

- Channel number of input and trigger: 8 + 1 ch
- Sampling frequency: 1~5 GSPS (1 ns ~ 200 ps/sampling depth)
- Number of sampling depth: 10 bit
- Power consumption: max. ~40 mW/channel
 [ex] ~40 mV/ch * 480 ch = 19.2 W for 60 DRS chips

According to the user's comments, the **time resolution of DRS** can be expected ~10% of one sampling depth. [ex] If we open ~300 ns gate with one sampling bucket is ~300 ps, then ~30 ps can be reached.

Min Sang RYU (Univ. of Seoul)

https://indico.cern.ch/event/992076/contributi ons/4181022/attachments/2170249/3664295/20 210113-KFC-TB2021_ReadoutSystem-mryu.pdf

RD_FCC collaboration meeting - 16-17 February 2021 Readout System R&D (in Korea)

Introduction of NOTICE Korea

http://www.noticekorea.com/

•

Equipment

NOTICE Korea is a domestic company that has been **developing and supplying a front-end electronics (FEE) and readout system** for high-energy experiments and other application fields.

40 CHANNEL TRIGGER & CLOCK MODULE TCB 40 channel trigger and clock module generates clock and trigger signals for NKFADC500 and M64ADC.

ECL COLLECTOR BOARD

N-CB-2-12 ECL Collector board is a electronic board for Belle experiment in KEK laboratory.

SHAPER AND DIGITIZER BOARD SDB-2012 shaper and digitizer board is a electronic board for Belle experiment in KEK laboratory.

Min Sang RYU (Univ. of Seoul)

https://indico.cern.ch/event/992076/contributi ons/4181022/attachments/2170249/3664295/20 210113-KFC-TB2021_ReadoutSystem-mryu.pdf

RD_FCC collaboration meeting - 16-17 February 2021

- The preparation of the next test beam is well progressing even if with some delay due to the pandemic
 - In these days we are commissioning the readout system
 - We received 3/5 FERS

Summary

- The data concentrator is still missing but we have a backup solution for the test beam in case of further delay
- We are also considering alternative approaches:
 - Waveform sampler with data extraction
 - Digital SiPM: option of great interest for future R&D

Test beam: assembly

S14160-1315PS				
Effective Area	1.3x1.3	mm^2		
Cell pitch	15	$\mu { m m}$		
Number of cells	7296			
Geometrical factor	49	%		
Vbd	38+-3	V		
Gain	3.6*105			
PDE	32	%		
Xtalk	<1	%		
DCR (Typical)	120	kHz		

RD_FCC collaboration meeting - 16-17 February 2021

R. Santoro

New SiPM under test

New sensors: S14160-1310PS / S14160-1315PS

Parameter	Symbol	S14160					
Falameter	Symbol	-1310PS	-3010PS	-1315PS	-3015PS	Unit	
Effective photosensitive area	-	1.3×1.3	3 × 3	1.3 × 1.3	3 × 3	mm	
Pixel pitch	-	10		15		μm	
Number of pixels	-	16675	90000	7296	40000	-	
Geometrical fill factor	-	31		49		%	
Package	-	Surface mount type				-	
Window	-	Silicone resin					
Window refractive index	-	1.57			-		

Symbol	S14160				
Symbol	-1310PS	-3010PS	-1315PS	-3015PS	Unit
λ	290 to 900				
λр	460				
PDE	18 32			2	%
VBR	38±3				
Vop	Vbr + 5		Vbr + 4		V
-	±0.1				V
DCR	120	700	120	700	kcps
	360	2100	360	2100	
Pct	< 1				
Ct	100	530	100	530	pF
М	1.8 × 10 ⁵		3.6 × 10 ⁵		-
ΔTVop	34				mV/°C
	Symbol λ PDE VBR Vop - DCR Pct Ct M ΔTVop	Symbol-1310PS λ -1310PS λ p1PDE1VBR1VopVbr-120DCR360Pct100M1.8 >ΔTVop100	S14 Symbol -1310PS -3010PS λ 290 tr λ p 46 PDE 18 VBR 38 Vop Vbr + 5 - ±0 DCR 120 700 Pct Ct 100 530 M 1.8 × 10 ⁵ 3	S14160 Symbol -1310PS -3010PS -1315PS λ 290 to 900 290 to 900 λp 460 900 PDE 18 33 VBR 38±3 38±3 Vop Vbr + 5 Vbr - ±0.1 120 DCR 120 700 120 DCR 120 360 2100 360 Pct 100 530 100 M 1.8 × 10 ⁵ 3.6 × 3.6 ×	$\begin{tabular}{ c c c c } \hline S14160 & S14160 & \\ \hline Symbol & -1310PS & -3010PS & -1315PS & -3015PS & \\ \hline $-1310PS & $-3015PS & -30

*2: Photon detection efficiency does not include crosstalk and afterpulses.

*3: Refer to the data attached for each product.

*4: Threshold=0.5 p.e.

RD_FCC collaboration meeting - 16-17

February 2021

The SiPM used in the previous test beams

The sensors used were 25 µm cell pitch (S13615-1025)

Parametera	S13	Linit		
Falameters	-1025	-1050	Onit	
Effective photosensitive area	1.0x1.0		mm²	
Pixel pitch	25	50	μm	
Number of pixels / channel	1584	396	-	
Geometrical fill factor	47	74	%	

	(4) 0.60 (1) (1) (4x) Φ 0.2
passivation	solder pac
TSV	0.60
	3 2

cathode

②.④ ○ → ○ ①.③

Paramatara	Symbol	513	Linit		
arameters	Symbol	-1025	-1050	Unit	
Spectral response range	λ	320 t	nm		
Peak sensitivity wavelength	λρ	4:	nm		
Photon detection efficiency at λp^{*3}	PDE	25	40	%	
Breakdown voltage	V _{BR}	53	V		
Recommended operating voltage ^{*4}	V _{op}	V _{BR} + 5 V _{BR} + 3		V	
Dark Count).	50		kono	
Ma	x	1	150		
Crosstalk probability Typ). –	1	3	%	
Ferminal capacitance	Ct	40		pF	
Gain ^{*5}	М	7.0x10⁵	1.7x10 ⁶	-	

RD_FCC collaboration meeting - 16-17 February 2021

Prototype with hadronic containment

RD_FCC collaboration meeting - 16-17 February 2021

