
Doug Roberts
University of Maryland

Speed Improvements in Hit Merging

Overview
  Prior to the introduction of backgrounds in FastSim, the Hit

Merging code ran at a reasonable speed relative to other code
  However, with backgrounds the time spent in hit merging

jumped way up.
  Reminder: the merging is basically a double-nested loop over

SimHits. The more SimHits, the more time spent.
  Ran tests using:

 V0.2.2
  PacMCApp
 callgrind!

  Background mix used for tests was Bhabha, RadBhabha, Pair

V0.2.2 Out-of-the-Box, no Background
PmcMergeHits::event doesn’t appear above; it’s too far down the list

Total Cost: 803,531,975 (5.07%) (not sure what the units are?)

Reconstruct

Simulate

V0.2.2 Out-of-the-Box with Background
PmcMergeHits jumps above PmcReconstruct and PmcSimulate! Becomes single most expensive
module
Total Cost: 23,470,429,356 (40.42%)
Nearly a factor of 30 increase in cost

Reconstruct

Simulate

MergeHits

Speed Improvements
  Using callgrind output, it was pretty easy to see where the

time was being spent
  Strategy:

 Cache any expensive calculations
  Created a new object to store the cached info

  Easy. There was no dynamic data.
  Includes caching results from some expensive dynamic_cast calls

 Rearrange cuts: cheap early, expensive late
  Found some functions that were passing objects as arguments

instead of pointers
  Lots of copy c’tor calls

 Got rid of a std::string::find() call

After speed fixes, with background
Total Cost: 2,804,375,274 (7.55%)
More than a factor of 8 improvement

Only ~3.5 times slower than original no-background version
For comparison, Simulate is ~10 times slower, Reconstruct is only ~1.5 times slower

Reconstruct

Simulate

MergeHits

Conclusion
  Able to get the merging code’s speed to a (hopefully)

acceptable level
  There should be virtually no difference in the output. It’s

just faster
  callgrind is a useful tool!

