EL yield and charge gain in He/CF₄/isobutane mixtures

<u>Rita Roque</u>, Daniel Mano, Fernando Amaro, Cristina Monteiro, Joaquim Santos

Detector Layout

Charge readout

Secondary electrons are collected at the bottom of the GEM.

Detector Layout

Detector Components:

- **Meshes** with ~84% optical transparency;
- Standard GEM with 3 x 3 cm² area;
- LAAPD:
 - Active diameter: 16 cm;
 - Range: 150 1000 nm.

Improvements in the gas flow

Results presented in 14/01/2021.

Improvements in the gas flow

• Reduced errors in the gas percentages by going from 1 L/h to 4 L/h.

Results presented in 14/01/2021.

Improvements in the gas flow

- Reduced errors in the gas percentages by going from 1 L/h to 4 L/h.
- Maintained He/CF₄ ratio in all measurements by keeping He/CF₄ flowing at 60/40 and then adding the required % of isobutane (1% - 5%).

Before, the He/CF_4 ratio was not constant:

	0% isobutane	2% isobutane	5% isobutane	
He/CF ₄ /isobutane	60/40	58/40/2	58/37/5	
He/CF ₄ ratio	1.5	1.45	~1.57	

Results presented in 14/01/2021.

Gas flow controllers.

Charge Signals

Charge gain increases with isobutane content

We attribute this behavior to *Penning Transfers:* the energy stored in He metastable states (19.8 eV and 20.6 eV) ionizes isobutane molecules (10.67 eV), thus creating more electron-ion pairs.

For more information:

- "<u>Penning Transfers</u>", by O. Sahin (2008)
- <u>I Korolov et al 2020 J. Phys. D: Appl. Phys.</u> <u>53 185201</u>

Charge Signals

Charge gain increases with isobutane content

We attribute this behavior to *Penning Transfers:* the energy stored in He metastable states (19.8 eV and 20.6 eV) ionizes isobutane molecules (10.67 eV), thus creating more electron-ion pairs.

For more information:

600

- "<u>Penning Transfers</u>", by O. Sahin (2008)
- <u>I Korolov et al 2020 J. Phys. D: Appl. Phys.</u> <u>53 185201</u>

Energy resolution does not depend on the isobutane content

All studied mixtures had an energy resolution (FWHM) around 12%.

Absolute EL yield

580

Absolute EL yield decreases with isobutane content

The number of EL photons emitted per primary electron decreases with the concentration of isobutane: isobutane converts EL photons into vibrational and rotational states.

Absolute EL yield

Absolute EL yield decreases with isobutane content

The number of EL photons emitted per primary electron decreases with the concentration of isobutane: isobutane converts EL photons into vibrational and rotational states.

Energy resolution does not depend on the isobutane content

The gradual degradation in energy resolution is attributed to low statistics and not to decreased detector performance.

580

EL yield per avalanche electron

EL yield per avalanche electron decreases with isobutane content

The number of EL photons emitted per avalanche electron decreases with the concentration of isobutane: this is a combination of the *Penning effect* (increased charge gain) and EL decrease (quenching).

12

% Isobutane	0%	1%	2%	3%	4%	5%
Average EL photons per avalanche electron	0.0757(12)	0.0440(5)	0.0257(4)	0.01661(21)	0.01181(14)	0.00956(14)

580

Results He/CF₄ (60/40)

Conditions: The voltage across the GEM was kept at 540 V and the induction field was reversed to collect the electrons in the induction mesh.

Producing additional EL in the induction region

Irregularities in the charge collection process

For fields above 5 kV/cm, the electrons are not fully collected at the anode: we attribute this effect to the characteristic properties of CF₄ in terms of electron attachment, diffusion and drift velocity (under study).

Results He/CF₄ (60/40)

Producing additional EL in the induction region

Irregularities in the charge collection process

For fields above 5 kV/cm, the electrons are not fully collected at the anode: we attribute this effect to the characteristic properties of CF₄ in terms of electron attachment, diffusion and drift velocity (under study).

We see a 40% increase in absolute EL for 11 kV/cm

We saw a gradual increase in absolute EL, which is consistent with the results reported in the presentation <u>G.Dho, E.</u> <u>Baracchini, A. Cortez (17/12/2020)</u>

Conclusions

With increasing isobutane content:

- Charge gain increases due to Penning Transfers.
- EL yield decreases due to photon quenching.
- Energy resolution stays unaffected: ~12% for charge signals and ~20% for EL signals (FWHM @ 5.9 keV).

Conclusions

With increasing isobutane content:

- Charge gain increases due to Penning Transfers.
- EL yield decreases due to photon quenching.
- Energy resolution stays unaffected: ~12% for charge signals and ~20% for EL signals (FWHM @ 5.9 keV).

Future Work

• Matching the CYGNO's Install

Install the optical glass window to remove the VUV component;

• Increase the EL yield Explore other MPGDs with additional amplification regions (MHSP/Cobra_125);

Return to sealed mode operation (using getters).

EL yield and charge gain in He/CF₄/isobutane mixtures

Backup

Absolute EL yield

Definition: number of secondary scintillation photons produced in the electron avalanches per primary electron created in the drift region.

The LAAPD detects the direct ⁵⁵Fe X-rays and the EL photons

The EL peak depends on the EL yield, LAAPD biasing and temperature.

The direct X-ray peak depends only on the LAAPD biasing and temperature.

The direct X-ray peak enables in-spectra calibration and the determination of the absolute EL yield.

For more information:

- <u>M. Moszyński et al 2002 Nucl. Instr. and</u> <u>Meth. A. 485 504-521</u>
- C.M.B. Monteiro, PhD Diss. 2011.