NEWS

22 April 2021

LIME study

To study the response of LIME to very small signals (while waiting to understand how to produce X rays with energies below 6 keV) we decreased the gain of GEM#1 to simulate energy release of 5, 4, 3, 2, 1 and 0.5 keV;

We used the measurements performed by Karolina and Francesco (that contains the extraction efficiency)

5 cm from the GEM

6 keV_{eq}

 $4 \, \text{keV}_{\text{eq}}$

2 keV_{eq}

l keV_{eq}

$0.5 \ keV_{eq}$

45 cm from the GEM

6 keV_{eq}

 $4 \, \text{keV}_{\text{eq}}$

2 keV_{eq}

$0.5 \ keV_{eq}$

No null efficiency

$He/CF_4(60/40)$

We tested Ar/CF_4 in LEMON:

- light yield.
- LEMON is in general less luminous than expected. Time to retire?
- Just another try to induce electroluminescence with the ITO glass

$Ar/CF_{4}(80/20)$

4 cm from the GEM

From the comparison, at the maximum stable voltage, Ar/CF₄ seems to have lower

