CYGNO simulations update

G. D'Imperio for the simulation group

CYGNO meeting 25/03/21

AmBe source

- AmBe source is made of $^{241}AmO_2$ and ^{9}Be
- ²⁴¹Am decay:
 - \circ Radioactive ²⁴¹Am has a half-life of 432.2 years and decays via α emission (five different energies averaging 5 MeV) to ²³⁷Np.
 - The dominant energy of the resulting background gamma-rays from the decay of the intermediate excited states in ²³⁷Np is 59.5 keV.
 - \circ ~ Fast neutrons are produced when the decay α particles interact with $^9\text{Be}.$

Ref: <u>https://www.sciencedirect.com/science/article/abs/pii/S0969804307001200</u>

AmBe simulation in LIME

- LIME simulation code https://github.com/CYGNUS-RD/CYGN0-MC/tree/lime
- Added macros in the macro directory to simulate separately:
 - neutrons with spectrum from figure in previous slide
 - 4.438 MeV gammas
 - ²⁴¹Am decay (mostly gammas at 59.5 keV)
- Position of the source above the LIME box + $10 \times 10 \times 10^3$ Pb shield

Basic comparison with AmBe data

- 2555 entries for MC with LIME
 - → ~50 sec equivalent data taking
- 407 for experimental data in LEMON
 → ~60 sec live-time
- ratio between the total entries = 0.16
 → matches with factor obtained considering the volumes LEMON (7), LIME (50) and equivalent time ratio = 0.17
- distribution in data shows no events at high energy and more events at low energy
 → not surprising: QF not included in MC, maybe saturation not fully corrected, filters in the reco for high density pixels, ...

Feasibility of Migdal study with LIME (LEMON)

How the Migdal effect can be measured

_	target gas	Ar 1 atm $(30 \text{ cm})^3$	Xe 8 atm $(30 \text{ cm})^3$
1.7	number of nuclei	$7.26 imes 10^{23}$	5.81×10^{24}
	cross section for 565 keV neutron	$0.65 \mathrm{\ barn}$	6.0 barn
	Migdal branching	$7.2 imes 10^{-5}$	$4.6 imes10^{-6}$
	fluorescence yield (K shell)	0.14	0.89
	scaling factor $(q_{\rm e}^{\rm max}/511{\rm eV})^2$	2.92	0.280
1000 n/	s/cm ² event rate	603 events/day	975 events/day

Table 1 Typical values of parameters for estimating the Migdal effect. The branchingratios for (n, l) = 1s and $q_e = 511 \, \mathrm{eV}$ are shown.

https://arxiv.org/pdf/2009.05939.pdf

Signal: use the (1s, K shell) x-ray de-excitation line @ 3 keV as an event tag. The signature is a NR with an ER separated by O(cm)

- Source activity: 2.2 10⁵ neutrons/sec
 - LIME: 50 NR/sec
 - LEMON: 7 NR/sec
- To study Migdal effect we need at least O(100) interesting events
 - → considering the BR of Migdal and probability of X-ray emission, we need ~10⁷ NR
 - LIME: 200000 sec livetime (~3 days)
 - LEMON: 1400000 sec livetime ([~]17 days)
- Dead time could be a factor 2-3
 - → few weeks of data taking

First comparison with Ar:CF4 mixture

- 10⁷ generated neutrons
- 2555 NR in He:CF4 mixture
- 2585 NR in Ar:CF4 mixture
- The spectrum for Ar:CF4 has more recoils at low energy