Distorted geometries effects

Ruggero Turra ruggero.turra@mi.infn.it

Università degli Studi di Milano & INFN

April 14, 2010

η	<i>E</i> [GeV]	Position	$\Delta X_0(\%)$ in r direction	$\Delta X_0(\%)$ view by the track
0.7	25, 50	Pixel Barrel	1, 2, 4	1.26, 2.51, 5.02
		SCT Barrel	1÷3, 2÷6, 4÷12	2.18, 4.36, 8.72
		TRT Barrel-TRT EC	3, 6, 10	4.96, 9.93, 16.54
1.3	25, 50	Pixel Barrel	1, 2, 4	1.97, 3.94, 7.88
		SCT services at R=55cm	2.5, 5.0, 7.5	4.92, 9.85, 14.78
2.0	50, 100	Pixel Barrel-EC	1, 3, 4	1.04, 3.11, 4.15
		Pixel EC services	$0.6 \div 1.2, 1.2 \div 2.4, 2.4 \div 4.8$	2.69, 5.39, 10.78
		SCT services at R=55cm	1, 2.5, 5	3.76, 9.40, 18.81

54 datasets, 20 geometry tags, $80\,000$ monoenergetic e^{\pm} per dataset

 $\Delta \eta = 0.1$ $\Delta \phi = \pi/2$ no vertex spread

All events, no IsEM selections

For simplicity we require: number of electron clusters = 1, number of photon clusters = 0 (the black one)

Single electron cluster

The number of events with only one electron cluster doesn't change too much adding material. The biggest increase is adding material in the pixel barrel location at $\eta = 1.3$. Usually the variation is $\lesssim 1\%$.

Observables

Absolute resolution : the standard deviation of the fitted gaussian from $E_{\rm rec} - E_{\rm gen}$ Variation from linearity : the mean of the fitted gaussian from $E_{\rm rec} - E_{\rm gen}$, divided by $E_{\rm gen}$: $\frac{\langle E_{\rm rec} \rangle}{E_{\rm gen}} - 1$ Tail distortion : fraction of events below 2σ IsEM selections : fraction of events selected as EM (tight/medium/loose) on the reconstructed sample

Fit procedure (crucial!)

Using 3 iterative steps varing the fit region. The last fit is in $(-1\sigma, 2.5\sigma)$.

Not every fits are very good:

Resolution and in particular linearity are biased by the tail

You can find all plots on www.mi.infn.it/~turra/distortion

Energy from calibration

Horizontal bars represent mean and std deviation of the sample (PDG ideogram style) computed from all the events (using under(over)flow).

Main effect: tail increase \Rightarrow resolution/linearity effect.

Variation of the resolution for $50 \,\mathrm{GeV}$ / $100 \,\mathrm{GeV}$ electrons. Resolution is from gaussian fit (bias by the tail).

Variation of the linearity for $50 \,\mathrm{GeV}$ / $100 \,\mathrm{GeV}$ electrons. Linearity is from gaussian fit (biased by the tail)

Variation of the tail for $50 \,\mathrm{GeV}$ / $100 \,\mathrm{GeV}$ electrons.

Linearity (different visualization)

Variation of the linearity for all the geometries at $\eta=2.0$

Variation of the linearity for all the geometries at $\eta=0.7$

• Linearity $\simeq -1\%$ with ideal geometry \Rightarrow too big

▶ Peak is clearly at $-500 \text{ MeV} \Rightarrow -500 \text{ MeV} / 5 \text{ GeV} = -1\%$ (not a fit problem)

• Linearity $\simeq -1\%$ with ideal geometry \Rightarrow too big

- ▶ Peak is clearly at $-500 \text{ MeV} \Rightarrow -500 \text{ MeV}/5 \text{ GeV} = -1\%$ (not a fit problem)
- ► This discrepancy may be consistent with 14%∆X₀ (7%∆X₀ in radial direction) in the SCT services or 16%∆X₀ (8%∆X₀ in the radial direction) in the pixel barrel (only a guess to be investigated).

• Linearity $\simeq -1\%$ with ideal geometry \Rightarrow too big

- ▶ Peak is clearly at $-500 \text{ MeV} \Rightarrow -500 \text{ MeV}/5 \text{ GeV} = -1\%$ (not a fit problem)
- ► This discrepancy may be consistent with 14%∆X₀ (7%∆X₀ in radial direction) in the SCT services or 16%∆X₀ (8%∆X₀ in the radial direction) in the pixel barrel (only a guess to be investigated).

To be verified: this discrepancy is due to the differences between the ideal geometry used in this study (ATLAS-GED-06-00-00) and the geometry used to calculate the parameters of the calibration algorithm (ATLAS-CSC-05-00-00)

Conclusions and future improvements

- We have computed the variations of the resolution, linearity, isEM selections, ... varying 3 η directions, 2 energies, 6 locations for additional material, 3 amounts of additional material. Every number and plot are available for other studies, corrections, ...
- There is a problem at $\eta = 1.3$ on the linearity
- We are looking at the shower shape variables and efficiencies: tons of plots on the web site: www.mi.infn.it/~turra/distortion

Thanks to: Danilo Banfi, Leonardo Carminati, ,Grant Gorfine, Luciano Mandelli, Guillaume Unal