# First results on 7 TeV data on W+jets and QCD background to Tt cross section

M.Ilaria Besana, T.Lari, F.Meloni, C.Troncon

### Introduction

# **Motivation**

#### Which is our goal?

Give an estimation of W+jets background to top quark pair production in e+jets channel

□ We have developed a technique based on W/Z ratio measurement:

$$W_{SR} = C_{MC}^* W_{CR}^* (Z \rightarrow ee + Z \rightarrow \mu\mu)_{SR} / (Z \rightarrow ee + Z \rightarrow \mu\mu)_{CR}$$

 $C_{MC}$  = coefficient estimated from Monte Carlo **CR** = low jet multiplicity region: exactly one jet SR = Tt selection cuts applied

- Results at 10 TeV reported in a note last summer Repeated the analysis with 7 TeV MC samples

#### What we can do with first data?

- Start to look at W/Z ratio at low jet multiplicity.
- Study QCD background contamination to W+1jet CR (one of the main sources of uncertainty of the method). We use a matrix method based on the assumption that ETmiss shape is independent from lepton ID cuts :
  - select a sample with a loose electron: sample dominated by QCD ,
  - background is estimated from loose lepton rate scaled by defaultLeptons/looseLeptons ratio measured in low ETmiss region: 5 GeV < ETmiss < 10 GeV. ۲



# Outline

✓ What we have done so far with data? We have a look at:

- ✓ electron cinematic variables,
- $\checkmark$  ETmiss distribution in events with one electron,
- ✓ jet cinematic variables,
- ✓ first W(ev) candidates
- $\checkmark\,$  electron pairs invariant mass distributions
- ✓ Monte Carlo studies to be done & technical issues

#### Some details

#### Data samples:

- data10\_7TeV.00152166.physics\_L1CaloEM
- data10\_7TeV.00152214.physics\_L1CaloEM
- data10\_7TeV.00152221.physics\_L1CaloEM
- data10\_7TeV.00152345.physics\_L1CaloEM
- data10\_7TeV.00152409.physics\_L1CaloEM
- data10\_7TeV.00152441.physics\_L1CaloEM
- data10\_7TeV.00152508.physics\_L1CaloEM
- data10\_7TeV.00152777.physics\_L1CaloEM
- data10\_7TeV.00152845.physics\_L1CaloEM

#### □ MC samples:

- mc09\_7TeV.105009.J0\_pythia\_jetjet.merge.AOD.e468\_s624\_s633\_r1064\_r1051\_tid108144\_00
- mc09\_7TeV.105010.J1\_pythia\_jetjet.merge.AOD.e468\_s624\_s633\_r1064\_r1051\_tid108147\_00
- mc09\_7TeV.105011.J2\_pythia\_jetjet.merge.AOD.e468\_s624\_s633\_r1064\_r1051\_tid108146\_00
- mc09\_7TeV.105012.J3\_pythia\_jetjet.merge.AOD.e468\_s624\_s633\_r1064\_r1051\_tid108145\_00
- mc09\_7TeV.105013.J4\_pythia\_jetjet.merge.AOD.e468\_s624\_s633\_r1064\_r1051\_tid108143\_00
- mc09\_7TeV.105802.JF17\_pythia\_jet\_filter.merge.AOD.e505\_s624\_s633\_r1114\_r1113
- mc09\_7TeV.106043.PythiaWenu\_no\_filter.merge.AOD.e468\_s624\_s633\_r1064\_r1051
- mc09\_7TeV.106046.PythiaZee\_no\_filter.merge.AOD.e468\_s624\_s633\_r1064\_r1051



# First results on data

# Electrons in first data: cut flow

- $\Box$  Electron selection cuts (standard top group selection cuts except for  $p_T$  cut):
  - p<sub>⊤</sub> > 10 GeV,
  - |n|<2.47 and no crack,</li>
  - medium,
  - top group standard isolation cuts: 4 GeV + 0.023 p<sub>T</sub>.

#### Number of electrons after each cut

- JO-J4 samples used,
- Monte Carlo is normalized to data integrate luminosity.

| Cuts           | MC               | DATA            |   |
|----------------|------------------|-----------------|---|
| All electrons  | $65000 \pm 1700$ | $31500 \pm 200$ |   |
| $P_T > 10 GeV$ | $4800 \pm 400$   | $1690 \pm 40$   |   |
| Medium         | $1700 \pm 300$   | $630 \pm 30$    | - |
| eta < 2.47     | $1700 \pm 300$   | $630 \pm 30$    |   |
| Isolation      | $1200 \pm 200$   | $460 \pm 20$    |   |
| no crack       | $1100 \pm 200$   | $430\pm20$      |   |

#### **General Efficiency:**

| Cuts           | Cut efficiency MC | Cut efficiency DATA |
|----------------|-------------------|---------------------|
| $P_T > 10 GeV$ | $0.074 \pm 0.007$ | $0.05 \pm 0.0013$   |
| Medium         | $0.36 \pm 0.06$   | $0.37 \pm 0.017$    |
| eta < 2.47     | $1.\pm 0.2$       | $1.\pm 0.06$        |
| Isolation      | $0.7 \pm 0.17$    | $0.73 \pm 0.04$     |
| no crack       | $0.9 \pm 0.2$     | $0.93 \pm 0.06$     |





19/04/2010

#### ETmiss in events with an electron

- $10 < p_T < 15 \text{ GeV}, \longrightarrow \text{QCD sample!!}$ no cuts on isolation and n. ETmiss distributions in events with loose/medium/tight electrons Z oose Electrons Medium Electrons 10<sup>2</sup> Tight Electrons MC Loose Electrons MC Medium Electrons MC Tight Electrons 10 10<sup>-1</sup> 35 5 10 15 20 25 30 40 E<sup>miss</sup><sub>T</sub> [GeV]
- Monte carlo distributions are normalized to data,
- the same MC normalization has been used for loose, medium and tight electrons.

Very good agreement between data and Monte Carlo both in shape and ratios!

**Event selection:** 

Trigger EM3\_L1 passed, one good offline electron:

### Electron ratios as a function of ETmiss

#### Event selection:

- Trigger EM3\_L1 passed,
- one good offline electron:  $10 < p_T < 15 \text{ GeV},$ 

  - no cuts on n. •
  - standard top isolation cu applied for medium and tight electrons.





- Results and comparisons are limited by available J# statistics.
- Data ratios are flat within errors (wich are still big due to low statistics).

### $\Delta R$ between electrons and jets

Need to check that overlp removal method developped on Monte Carlo samples can be applied to data.

Compare  $\Delta R(e-jet)$  distributions for data and Monte Carlo .

- Plot done for events that pass EM3\_L1 trigger and with at least one good electron.
- Good electrons selected asking:
  - p<sub>T</sub> >10 GeV,
  - |n|<2.47 and no crack,</li>
  - medium,
  - top standard isolation cut.
- Good jet selected asking:
  - |n|<2.5,</li>
  - p<sub>⊤</sub> >20 GeV.
- Monte Carlo distributions are normalized to data.



Quite good agreement, but still low statistics!

### Jets after overlap removal

- Plot done for events that pass EM3\_L1 trigger and with at least one good electron.
- Good electrons selected asking:
  - p<sub>T</sub> >10 GeV,
  - |n|<2.47 and no crack,</li>
  - medium,
  - top standard isolation cut.
- Good jet selected asking:
  - |n|<2.5,</li>
  - p<sub>T</sub> >20 GeV,
  - DeltaR(ele-jet)>0.4.
- Monte Carlo distributions are normalized to data.

### Quite good agreement, but still low statistics!



#### W(ev) candidates: event 5966801



# W (ev) candidates: 4!?

#### Run Number 152441 , event 3455894

- 1 medium ele (not tight: no b-layer hit, softele opposite charge nearby)
  - p<sub>T</sub>, η, φ = (28.73 GeV, 1.58, -0.597)
  - etiso20 = 1.96 GeV
- etmiss = 24.47 GeV, ETmiss φ = 2.6440137
- MT(ele,ETmiss) = 53.0 GeV
- 3 jets after jet-ele overlap removal:
  - $p_{T}$ , n,  $\phi = (35.08 \text{ GeV}, 1.18, -3.06)$ , n90 = 184 FCor = 0.0003
  - p<sub>T</sub>, η, φ = (30.93 GeV, -0.819, -0.879), n90 = 86
    FCor = -0.0002
  - $p_T$ ,  $\eta$ ,  $\varphi$  = (12.43 GeV, -0.120, 1.682) n90 = 60 FCor = 0

#### Run Number 152441, event 6583857

- 1 medium ele (not tight: no b-layer hit, bad calo cell nearby ),
  - p<sub>T</sub>, η, φ = (44.33 GeV, -2.02, 2.040)
  - etiso20 = 2.66 GeV
- ETmiss = 26.62 GeV, ETmiss φ = -1.205289
- MT(ele,ETmiss) = 68.7 GeV
- 1 jet after jet-ele overlap removal: p<sub>T</sub>, η, φ = (31.99 GeV, -1.92, -0.95) n90 =143, FCor=0

#### Run Number 152777, event number 3276028

- 1 tight electron
  - p<sub>T</sub>, η, φ = (22.7 GeV, -0.64, -2.5)
  - etiso20 = 0.344551 GeV
- ETmiss = 36.8918, ETmiss φ = 0.0326501
- MT = 55.2804 GeV





#### Electrons in first data: conversions

- Too many W (ev) candidates: 2 of them have medium electrons failing b-layer requirement cut.
- Problem:

in release 15 electrons coming from conversions are saved in electron container!

- □ We want to select electrons that are not coming from conversions.
- Idea: reject all the electrons that have a match with a photon:  $\Delta R(e-photon) > 0.05.$
- Very preliminary studies, but:

#### Event 6583857 is rejected!

## Looking for Z events





No Z candidate found:

 $\sigma_{z} = 1/10^{*}\sigma_{w}$  indeed!

- Plots done for events passing trigger EM3\_L1 and exactely 2 good electrons.
- Good electrons selected asking:
  - p<sub>T</sub> >5 GeV,
  - |n|<2.47 and no crack,</li>
  - loose.
- Monte Carlo distributions are normalized to data.

# MC studies to be done and technical issues

### Work to be done on Monte Carlo I

#### Study of W/Z ratio:

 Comparison between Alpgen and Sherpa: some discrepancies found. See:

http://indico.cern.ch/contributionDisplay.py?contribId=5&confId=80549 Work in progress: try to figure out where they come from.

 Study Alpgen samples with varying parameters: waiting for datasets production.

Estimation of other background to W(enu)+1jet sample:

- W (τν)
- Ζ (ττ)
- Z (ee)

• T†

#### Work to be done on Monte Carlo II

On QCD background estimation:

- Our technique for the measurement of the QCD background to W+Njets selection is based on the tight/loose rate being independent of missing energy.
- This is unfortunately not very accurate according to 7 TeV Montecarlo (JF17),
  overestimation of background.
- This needs to be understood and improved if we want to measure W rate, especially in 0-jet bin (1jet and 2jet rates might be estimated accurately enough)!



### Work to be done on Monte Carlo III

#### On QCD background estimation II:

- The composition of control sample (left) has a small variation with ETmiss.
- Even for a given component, the ratio is correlated with ETmiss (right).





We are investigating possible solutions, this is highest priority for QCD background estimation work:

Additional control samples can be used to measure tight/loose ratio for QCD even at high ETmiss (lower pt electrons, ETmiss aligned with electron, ETmiss aligned with jet)

#### We are looking into this!!

# AOB

- Involved in the preparation of a note on W+jets background estimation from data:
  - first draft: one month.
- Involved in top group note on QCD background estimation:
  - first draft: one month.
- Technical work to do in order to interface our private code with top group standard code.