

Run Number: 152221, Event Number: 383185

Date: 2010-04-01 00:31:22 CEST

 $p_T(\mu+) = 29 \text{ GeV}$ $\eta(\mu+) = 0.66$ $E_T^{\text{miss}} = 24 \text{ GeV}$ $M_T = 53 \text{ GeV}$

W→µv candidate in 7 TeV collisions

D. della Volpe Università degli Studi "FEDERICO II" ed INFN di Napoli

30/03/2010 Collisioni a 7

solo 1 mese fa!

Sommario

o "https://atlasop.cern.ch/atlas-point1/wmi/current/Run%20Status_wmi/ATLAS.html"

Luminosità Integrata

- In totale ci sono stati 22 run dal 30 Marzo al 1 Maggio
- Circa la metà della statistica 657.8 µb⁻¹ è stata accumulata in un singolo run (153656) durato ~ 30 h

- L'efficienza di DAQ di ATLAS è del 96.4% con tutti i detector ON
- Il tempo morto medio è ~1,5% il resto è dominato dalla procedura "warm start" che dura > 10 minuti
- Sul run di 30h l'impatto è stato minimo ~0,2%

900 GeV nel 2010

- lo scorso week-end è stata raccolta in due fill una luminosità a 900 GeV di circa 30 volte quella accumulata nel 2009
- A causa dell'alta luminosità si cominciano a vedere effetti dell'interazione beam-beam anche a 900 GeV

ATLAS Data Taking

II Run parte subito dopo l'INJECTION

All'inizio della RAMPA di energia il trigger viene messo in HOLD per evitare ai TGC di desincronizzarsi.

Alla fine della rampa il trigger viene rilasciato

Allo STABLE BEAM i detector dei MUONI, e del tracciatore detector vengono accesi ("warm start")

In pochi minuti ATLAS è completamente operativo (READY)

ATLAS Data Taking

II Run parte subito dopo l'INJECTION

All'inizio della RAMPA di energia il trigger viene messo in HOLD per evitare ai TGC di desincronizzarsi.

Alla fine della rampa il trigger viene rilasciato

Allo STABLE BEAM i detector dei MUONI, e del tracciatore detector vengono accesi ("warm start")

In pochi minuti ATLAS è completamente operativo (READY)

Time [s]

Run 153565

- Circa la meta della statistica 657.8 µb^{-/} è stata accumulata in un singolo run (153656) durato ~ 30 h
- Si è provata utilizzata una nuova configurazione di bunch (3 bunch per beam con 2 collidenti per) e lo squeezing del fascio portando $\beta^*=11$ da $\beta^*=2$ è evidente dal

Beam Spot

$$\sigma_{x,y} = \sqrt{\varepsilon \cdot \beta^*} \quad \varepsilon = \varepsilon_n \cdot \gamma$$

- calcolato usando la distribuzione del vertice
- calcolato usando l'emittanza e la misura di β*

Luminosità in ATLAS - Van der Meer Scan

La misura è stata effettuata con successo da LUCID.

Lo studio delle sistematiche è ancora in corso ma i risultati sembrano buoni.

Beam Separation in µm

Luminosità in ATLAS - Van der Meer Scan

La misura è stata effettuata con successo da LUCID.

Beam Separation in µm

Luminosità in ATLAS - Van der Meer Scan

feqw

Lumi evolution, medium term (~2 weeks per step)

I tot				
3.6x10 ¹⁰		Single_ 2b _1_1_1 1.4e28 0.09	1.8e10ppb 1kHz	
9x10 ¹⁰		Single_ 2b _1_1_1 9e28 0.56	4.5e10ppb 6.3kHz	
18x10 ¹⁰	Single_ 2b_ 1_1_1 3.6e29 2.25	9e10ppb 25kHz	Single_ 4b _2_2_2 1.8e29 0.56	4.5e10ppb 12.6kHz
36x10 ¹⁰	Single_ 4b _2_2_2 7.2e29 2.25	9e10ppb 50kHz	Single_ 8b _4_4_4 3.6e29 0.56	4.5e10ppb 25kHz
72x10 ¹⁰	Single_ 8b _4_4_4 1.5e30 2.25	9e10ppb 100kHz	2025ns_ 15b _10_10_10 9e29 0.56	4.5e10ppb 63kHz
144x10 ¹⁰		2025ns_ 15b _10_10_10 3.6e30 2.25	9e10ppb 126kHz	3-4 bunches injected per transfer
J				

Lumi evolution, medium term (~2 weeks per step)

I tot					
3.6x10 ¹⁰		Single_ 2b _1_1_1 1.4e28 0.09	1.8e10ppb 1kHz		
9x10 ¹⁰		Single_ 2b _1_1_1 9e28 0.56	4.5e10ppb 6.3kHz		
18x10 ¹⁰	Single_ 2b_ 1_1_1 3.6e29 2	9e10ppb .25 25kHz	Single_ 4b _2_2 1.8e29	2_2 4.5e10ppt 0.56 12.6kHz	
36x10 ¹⁰	Single_ 4b _2_2_2 7.2e29 2	2 9e10ppb .25 50kHz	Single_ 8b _4_4 3.6e29	4_4 4.5e10ppt 0.56 25kHz	
72x10 ¹⁰	Single_ 8b _4_4_4 1.5e30 2	9e10ppb .25 100kHz	2025ns_ 15b _1 9e29	10_10_10 4.5e10ppk 0.56 63kHz	
144x10 ¹⁰		2025ns_ 15b _10_2 3.6e30 2.2	10_10 9e10ppb 25 126kHz		injected per transfe
		7			

Lumi evolution, medium term (~2 weeks per step)

I tot	Bunch/beam			
3.6x10 ¹⁰	Single_2b_1 1.4e28	_1_1 1.8e10ppb 0.09 1kHz	,	
9x10 ¹⁰	Single_2b_ 9e28	_1_1_1 4.5e10ppb 0.56 6.3kHz		
18x10 ¹⁰	Single_ 2b_ 1_1_1 3 .6e29 2.25	9e10ppb Single_4b_2_ 25kHz 1.8e29	2_2 4.5e10ppl 0.56 12.6kHz	
36x10 ¹⁰	Single_4b_2_2_2 2 7.2e29 2.25	9e10ppb Single_8b_4_ 50kHz 3.6e29	4_4 4.5e10ppl 0.56 25kHz	D
72x10 ¹⁰	Single_ 8b _4_4_4 1.5e30 2.25	9e10ppb 100kHz 9e29	10_10_10 4.5e10ppl 0.56 63kHz	
144x10 ¹⁰	2025ns_ 3.6e30	_ 15b _10_10_10 9e10ppb 2.25 126kHz	3-4 bunches	injected per transfer
L]				

Lumi evolution, medium term (~2 weeks per step)

I tot				
3.6x10 ¹⁰		Single_ 2b _1_1_1 1.4e28 0.09	1.8e10ppb 1kHz	
9x10 ¹⁰		Single_ 2b _1_1_1 9e28 0.56	4.5e10ppb 6.3kHz	
18x10 ¹⁰	Single_ 2b_ 1_1_1 3.6e29 2.25	9e10ppb 25kHz	Single_ 4b _2_2_2 1.8e29 0.56	4.5e10ppb 12.6kHz
36x10 ¹⁰	Single_ 4b _2_2_2 7.2e29 2.25	9e10ppb 50kHz	Single_ 8b _4_4_4 3.6e29 0.56	4.5e10ppb 25kHz
72x10 ¹⁰	Single_ 8b _4_4_4 1.5e30 2.25	9e10ppb 100kHz	2025ns_ 15b _10_10_10 9e29 0.56	4.5e10ppb 63kHz
144x10 ¹⁰		2025ns_ 15b _10_10_10 3.6e30 2.25	9e10ppb 126kHz	3-4 bunches injected per transfer
J				

Lumi evolution, medium term (~2 weeks per step)

I tot				
3.6x10 ¹⁰		Single_ 2b _1_1_1 1.4e28 0.09	1.8e10ppb 1kHz	
9x10 ¹⁰		Single_ 2b _1_1_1 9e28 0.56	4.5e10ppb 6.3kHz	er Pile-up
18x10 ¹⁰	Single_ 2b_ 1_1_1 3.6e29 2.25	9e10ppb 25kHz	Single_ 4b _2_2_2 1.8e29 0.56	4.5e10ppb 12.6kHz
36x10 ¹⁰	Single_ 4b _2_2_2 7.2e29 2.25	9e10ppb 50kHz	Single_ 8b _4_4_4 3.6e29 0.56	4.5e10ppb 25kHz
72x10 ¹⁰	Single_ 8b _4_4_4 1.5e30 2.25	9e10ppb 100kHz	2025ns_ 15b _10_10_ 9e29 0.56	10 4.5e10ppb 63kHz
144x10 ¹⁰		2025ns_ 15b _10_10_10 3.6e30 2.25	9e10ppb 126kHz	3-4 bunches injected per transfer
L]				

Lumi evolution, medium term (~2 weeks per step)

Lumi evolution, medium term (~2 weeks per step)

Limitazioni nel rate

II DAQ di ATLAS è capace di sostenere fino a 700 MByte/s

Se il duty cycle del Tier-0 non è del 100 % si può eccedere il limite dei 300 MByte/s

Strategia per il Trigger

Strategia per il Trigger di L1

• Per limitare gli effetti del timing non ancora ottimale e massimizzare il numero di muoni registati su disco si è usato un artificio sul trigger di mu.

Ci sono più studi in parallelo

La statistica non è stata ancora tutta analizzata ma i primi risultati sono buoni

Ci sono più studi in parallelo

La statistica non è stata ancora tutta analizzata ma i primi risultati sono buoni

Ci sono più studi in parallelo

La statistica non è stata ancora tutta analizzata ma i primi risultati sono buoni

Ci sono più studi in parallelo

La statistica non è stata ancora tutta analizzata ma i primi risultati sono buoni

Ci sono più studi in parallelo

La statistica non è stata ancora tutta analizzata ma i primi risultati sono buoni

Ci sono più studi in parallelo

La statistica non è stata ancora tutta analizzata ma i primi risultati sono buoni

Lo spettro di p_T dei muoni è ancora basso per poter guardare all High p_T

Trigger progettato per μ prompt non da decadimenti di π/K

Strategia di commissioning dell'HLT

- Efficienza di ricostruzione $(\eta/\phi/p_T/charge wrt offline)$
 - Uniformità della risposta
 - Verifica della pattern recognition e del track matching
- Verifica delle soglie
 - Sharpness del turn-on
 - Ottimizzazione dei tagli
 - Assegnazione delle soglie ottimali
 - Verifica delle Look-Up-Table.
 - Ricalcolo LUT per il p_T corretto.
- Confronto dati vs Montecarlo
- Ottimizzazione dei rate

Tier-O and Loop di Calibrazione

Ricostruzione prompt e Loop di calibrazione

Dati disponibili in ~2.5 gg

Pixel	noise channel map, daily	typically 6 h, max. 18 h
SCT	noisy strips, regular updates	typically 4 h, max. 24 h
TRT	rt-relationship + t0, 2 updates since start	up to 24 h
LAr	bad channels, 1 update since start	up to 24-36 h
Tile	channel status, noise constants	up to 36 h
Muon	not in loop yet (need at least 10 ³⁰ lumi)	-
beam spot	beam spot parameters	typically 2 h, max. 6 h

Calibration - Pixel

✓ Calibration loop in place works fine.

✓ For example, occupancy shown for

- Online (Raw hits)
- Offline with calibration masks (First pass reco)
- Offline after the calibration loop using the online occupancies and computing new noise masks (Bulk reco)

Noise Pixel Occupancy<10⁻¹⁰

Calibrazione Muoni

- L'infrastruttura è pronta ed è stato chiesto di partecipare al loop anche ricaricando lo stesso set di costanti. Sarà fatto nelle prossime settimane.
- Finora dal loop di calibrazione per bassa statistica che non permette di migliorare le costanti ora in uso prodotte di dati di beam splash e cosmici;
- Sono attivi i centri di calibrazione che usano la stream dedicata che però è dominata dai cosmici; si sta valutando la possibilità di fare una selezione più stringente sulla stream; Questo però limita l'uniformità di illuminazione dello spettrometro.

	<u>Subdetector</u>	Canali	<u>Frazione</u> <u>attiva</u>
	Pixels	80 M	97.5%
	SCT Silicon Strips	6.3 M	99.3%
	TRT Transition Radiation	350 k	98.0%
	LAr EM Calorimeter	170 k	98.5%
	Tile calorimeter	9800	97.3%
Dotootor Dorformancoo	Hadronic endcap LAr	5600	99.9%
Delector renormances	Forward LAr calorimeter	3500	100%
	LVL1 Calo trigger	7160	99.8%
	LVL1 Muon RPC trigger	370 k	99.7%
	LVL1 Muon TGC trigger	320 k	100%
	MDT Muon Drift Tubes	350 k	99.7%
	CSC Cathode Strip	31 k	98.5%
	RPC Barrel Muon	370 k	97.3%
	TGC Endcap Muon	320 k	98.8%

Collision Event at 7 TeV with 2 Pile Up Vertices

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

Pixel

Status di

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

Le distribuzioni sono normalizzate al numero totale di eventi.

Run 152779, 1/physics_L1Calo /Jets/AntiKt4H1TopoJets/Details/EtaPhi/JetEtaPhi

Liquid Argon

- Il Calorimetro è già calibrato molto bene in tempo ~ 1ns
- Già con i dati 2009 a 900 GeV è riuscito a produrre dei risultati di Fisica
- La calibrazione in energia richiede molta statistica ma la risposta del trigger elettromagnetico suggerisce che le cose vanno bene

6

L1 Efficiency w.r.t. Offline Cluster

0.8

0.6

0.4

0.2

Muoni

Conclusioni

- ATLAS sta funzionando egregiamente è pronto per raccogliere quello che LHC ci darà
 - i detector sono ragionevolmente calibrati
 - la presa dati è efficiente e ben funzionante
- Non è chiaro quanta statistica sarà disponibie prima dello shutdown ma difficilmente sarà > 1 pb⁻¹

- Ci i sono dati (!) e ci sono primi risultati di Fisica, il primo lavoro è stato sottomesso
- Il contributo italiano è di primo piano ed estremo rilievo non solo nei detector, nelle operazioni ma anche nelle analisi.
- Insomma siamo all'inizio ma siamo pronti ci serve solo luminosità

Backup Slides

General

LHC Cycle

Data Taking Efficiency

Beam Spot Position

2010, 900 GeV

2010, 7 TeV

More Pixel

Pixel

 Cluster size è maggiore nel 2010 usando una configurazione a soglia minore (da 4000e nel 2009 a 3500e nel 2010). Non perfetto accordo con MC e' in studio.

Stato dei Pixel

L'operazione del rivelatore è buona e non presenta particolari problemi.

- Pixel accesi solo con STABLE BEAM (data-taking) oppure quando non c'è fascio per un intervallo di tempo sostanzialmente lungo (calibrazioni).
- Numero di moduli morti stabile da dicembre (46 su 1744 -> 2.6%).
- Con la luminosità saremo presto in grado di mappare con precisione la quantita' di pixel morti e poi di monitorarla nel tempo (le calibrazioni ce ne danno solo una stima).
- Nelle ultime tre settimane 3 canali nei 272 trasmettitori ottici (TX) in USA sono morti e sono stati rimpiazzati. Da Agosto, quando tutti i plugin sono stati rimpiazzaticon una nuova produzione proprio perche' mostravano un failure rate insostenibile, 1 canale ogni 2/3 giorni, queste sono i primi problemi osservati.
- Noise stabilmente basso (1 hit su 80 milioni di canali per evento).

Pixel

Tilecal

2010 time calibration with splashes

- · Last splash events were delivered in march 2010.
- The results with these data show a very good intercalibration between the partitions.
- Apart for some outliers (< 3% of the cells), the total distribution of the measured times of all the cells shows an intercalibration of better than 0.5ns

15-Feb-2010

Energy of the cells

- From November 2009 LHC delivered collisions at √s=0.9 TeV, 2.36 TeV and 7 TeV
- The cell energy spectrum in the 0.9TeV, 2.36TeV and 7TeV collisions, compared with MC and noise (random triggered events).

Uniformity in eta and phi

- Energies are considered at EM scale, without calibration.
- In order to reduce the noise contamination, only cells with a energy response > 500 MeV are considered.
- The energy response is:
 - at the same level of the MC
 - flat in Φ
 - follows the shape of the MC in η

Masked cells of TileCal

Update of an already public plot:

"Eta-Phi representation of the Amount of Tile Masked Cells (12 April, 2010)" This plot shows the number of cells masked in each eta-phi bin. The bin is chosen to be 0.1 x 0.1, corresponding to the calorimeter tower definition. The bin color indicates the integrated number of TileCells masked in a given tower. Thus, a value of 3 indicates the complete tower is masked.

Tile Situation since

Run 152779, 1/physics_L1Calo /Jets/AntiKt4H1TopoJets/Details/EtaPhi/JetEtaPhi