



# Preliminary simulations of AmBe in LIME

Giulia D'Imperio

25/01/21 CYGNO simulation meeting

### AmBe source

- AmBe source is made of <sup>241</sup>AmO<sub>2</sub> and <sup>9</sup>Be
- <sup>241</sup>Am decay:
  - $\circ$  Radioactive <sup>241</sup>Am has a half-life of 432.2 years and decays via  $\alpha$  emission (five different energies averaging 5 MeV) to <sup>237</sup>Np.
  - The dominant energy of the resulting background gamma-rays from the decay of the intermediate excited states in <sup>237</sup>Np is 59.5 keV.
  - Fast neutrons are produced when the decay α particles interact with 9Be.
- (α,n) reaction with <sup>9</sup>Be
   α+9Be → 12C+n (~42%),
   α+9Be → 12C\* +n (~58%),
   12C\* → 12C+γ (4.38 MeV)



Fig. from
https://rifj.ifj.edu.p
l/handle/item/217

#### AmBe simulation in LIME

- LIME simulation code <a href="https://github.com/CYGNUS-RD/CYGNO-MC/tree/lime">https://github.com/CYGNUS-RD/CYGNO-MC/tree/lime</a>
- Added macros in the macro directory to simulate separately:
  - o neutrons with spectrum from figure in previous slide
  - 4.438 MeV gammas
  - o <sup>241</sup>Am decay (mostly gammas at 59.5 keV)
- Position of the source about 4 centimeters above the LIME box



(no lead between source and detector)



#### AmBe tracks in LIME

- 10000 generated neutrons → 6 tracks (4 NR + 2 ER)
- 10000 generated Am decays → 16 tracks
- 6000 generated gammas 4.438 MeV → 103 tracks



#### AmBe tracks in LIME

- 10000 generated neutrons → 6 tracks (4 NR + 2 ER)
- 10000 generated Am decays → 16 tracks
- 6000 generated gammas 4.438 MeV → 103 tracks



- Note the scale in the color palette: nuclear recoils have more dense energy release
- Note that these are 10000 source events superimposed:
  - → only in 58% of cases the events with NR have also a gamma of 4.438 MeV
  - → in most cases only tracks from gammas and no neutron events

## Summary and to do list

- Code and macros for AmBe simulations are ready (on github)
- Simple checks on few events look reasonable
- Need to produce more events for systematic studies:
  - study the energy spectrum of ER and NR
  - study source AmBe acceptance/source intensity needed for LIME measurements in order to study feasibility of Migdal effect with LIME
  - o apply digitization + noise
  - study reconstruction performance on simulated images