

Esperimento Marix-Rad: Gruppo V Bologna

Durata 1 anno.

Sezioni partecipanti: BO, FE, NA, MI

Collaborazioni con: Istituti Ortopedici Rizzoli, Technische Universität München

Coordinatore Nazionale: Paolo Cardarelli. Coordinatore locale: Armando Bazzani

Partecipanti: Gastone Castellani, Lorenzo Isolan, Carlo Emilio Montanari,

Sandro Rambaldi, Marco Sumini

Collaboratori esterni: Giorgio Turchetti (INDAM/GNFM), Massimo Placidi (Berkeley LBNL)

Obiettivo

Analisi di campioni biomimetici, realizzati con stampanti 3D, tramite X-ray imaging dual energy e PPCI presso la sorgente Compton MuCLS di Monaco.

Simulazioni delle immagini ottenute con MuCLS.

Confronto con immagini da microtomography convenzionale con mezzo di contrasto.

l campioni: realizzati mediante stampante 3D partendo da immagini tomografiche X o NMR. Dr. Brunella Grigolo

SERVIZIO SANITARIO REGIONALE EMILIA - ROMAGNA Istituto Ortopedico Rizzoli di Bologna Istituto di Ricovero e Cura a Carattere Scientific

Materiale biocompatibile Menisco in collagene con staminali

Sopravviv. cellule a 28 giorni

Dopo la stampa

Giorno 14 dopo impianto

Giorno 28

Follow up attuale: mediante istologia con sacrificio del coniglio impiantato. Impossibile su paziente tranne il caso di un secondo intervento.

Prospettive imaging ICS: follow up anatomico e funzionale non invasivo dell'impianto.

Sorgente ICS di Monaco: anello accumulazione e

+ ricircolatore luce laser.

- Energia **E_e ≤ 44 MeV**
- X-ray: E_x ≤ 35 keV, flusso ~ 10¹¹ ph/s

```
Imaging programmato: contrasto di fase PPCI e dual energy (X energy shift ~ 2 keV ).
```


Dual energy per tessuti molli ottimale con sorgente monocromatica. Un confronto sugli stessi stesso campioni non è stato ancora mai eseguito. La formalizzazione dell'accordo per l'attività sperimentale è in fase conclusiva.

Imaging possibile: utilizzo di un **mezzo contrasto** come lo iodio per sottrazione K-edge a 33 keV, oppure nanoparticelle d'oro. Gli agenti di contrasto cationici sono indicati per cartilagini e menisco.

PHASE-CONTRAST IMAGING

A brilliant coherent (or partially coherent) source allows to take advantage of X-ray refraction

X-ray Phase-Contrast Imaging

high-resolution images of low contrast details not visible in conventional absorption X-ray imaging

Courtesy: M. Kitchen et al. / Monash University

Courtesy: F. Pfeiffer et al. / TUM

Courtesy: G. Tromba et al. / Elettra TS

Courtesy: G. Tromba et al. / Elettra TS

10-40 keV X-rays

CLS: 40 MeV e- / 5x4 m² footprint 30-40 keV X-rays

Double Arm S-Band STAR-like Source

SHORT PARAMETER LIST

Scattered Photon Energy scales with the square of the electron Energy and the Laser Harmonic $E_{X} = 1.9 \times 10^{-2} \frac{E_{e}^{2}(MeV)}{\int_{ph}^{0}(mm)} h_{L}$ Key parameters range $E_{e} 40 - 80 \text{ MeV}$

h_L =1 flux 2 10¹⁰ ph/s E_x 30-120 KeV

 $h_{L} = 2$ flux 0.510¹⁰ ph/s $E_{x} = 60-240$ KeV

SOURCE	PARAMETER		VALUE
LINAC	Energy	MeV	80
	Bunch charge	рC	500
	Bunch length	ps	3.5
	Peak current	А	140
	Avg. current	μA	0.05
	Rep. Rate	Hz	100
Yb-YAG LASER	Pulse Energy	J	0.85
	Wavelength	nm	1024-512
	Harmonic h_L		1-2
	Pulse duration	ps	5
	Rep. Rate	Hz	100
X-ray	Energy	keV	120- (240)
	Pulse duration	ps	<5
	Flux	ph/s	2- (0.5))x10 ¹⁰
	Divergence	mrad	+/- 6.4

Scattered Photon Flux scales with the Linac current and the Inverse square of the the Laser Harmonic

$$N_{X} = S_{T} L = \frac{S_{T}}{A(j)} \frac{E_{LP}^{0} I_{linac}}{ehc} \frac{|_{ph}^{0}}{h_{L}^{2}}$$