Lorenzo Isolan^{1,2}, Davide Laghi¹, Marco Sumini^{1,2}

¹Industrial Engineering Department, University of Bologna, Italy ²INFN, Bologna, Italy

LPA2: support to radiobiology activities.

Cell holder design and MC analysis of radiobiological effectiveness of ultra-high dose rates pulses

> LPA2-Project 04/02/2021 Bologna

IDEA OVERVIEW

The flash sources will probably be the next generation radiotherapy devices.

The usual models (e.g. the Modified Linear Quadratic Model), used for describing the surviving fraction of irradiated cells are required to be upgraded for such field of application.

$$S = e^{-\alpha D - G\beta D^2}$$

"S" is usually interpreted as indicating that cell killing results from the interaction of two elementary damaged species-perhaps DNA double-strand breaks- to produce a species-perhaps a dicentric chromosomal aberration-which may cause lethality.

The two terms, α , β , in Equation indicate that the two elementary damaged species may be produced by the passage of the same track of radiation (linear term in dose) or by two different tracks (quadratic term). Clearly, if some time elapses between the passage of the first and second tracks, there exists the possibility of the first damaged site being repaired before interacting with the second. This repair will result in a reduction of the second, quadratic term by a factor denoted "G". The factor G will depend on the details of the temporal distribution of the dose, as well as on the time dependence of the function describing the repair of the elementary damaged species.

A strategy for predicting the RBE of flash devices and, consequently, the α and β terms have been investigated.

Cell line	Cell type	Protocol	(Gy^{-1})	β (Gy ⁻²)	α/β (Gy)	<i>T</i> _{1/2} (min.)
IX-34	Melanoma	Ldr	0.27	4.21×10^{-2}	6.4	8
IX-32	Pancreatic Ca	Ldr	0.51	4.84×10^{-2}	10.5	316
X-58	Pancreatic Ca	Ldr	0.47	5.20×10^{-2}	9.0	48
X-99	Breast Ca	Ldr	0.50	3.05×10^{-2}	16.4	3
IX-118	Melanoma	Ldr	0.33	3.80×10^{-2}	8.7	14
[X-151c	Cervical Ca	Ldr	0.74	3.54×10^{-2}	20.9	26
IX-155c	Cervical Ca	Ldr	0.29	2.35×10^{-2}	12.4	22
[X-156c	Cervical Ca	Ldr	0.31	2.46×10^{-2}	12.6	22
[X-160c	Cervical Ca	Ldr	0.46	$7.73 imes 10^{-2}$	5.9	129
[X-171c	Cervical Ca	Ldr	0.33	1.69×10^{-2}	19.4	9
K-N-SH	Neuroblastoma	Ldr	0.26	$2.63 imes 10^{-2}$	9.9	21
-20S	Osteosarcoma	Ldr	0.28	5.15×10^{-2}	5.4	24
K-MEL28	Melanoma	Ldr	0.13	11.3×10^{-2}	1.2	1
PMI-7951	Melanoma	Ldr	0.27	$4.68 imes 10^{-2}$	5.8	12
IDAMB-231	Breast Ca	Ldr	0.52	9.10×10^{-2}	5.7	1
W-620	Colon Ca	Ldr	0.23	$4.80 imes 10^{-2}$	4.8	37
G-1522	Skin Fibroblast	Ldr	0.21	3.97×10^{-2}	5.3	16
CD-18LU	Lung Fibroblast	Ldr	0.24	3.45×10^{-2}	6.9	66
Is-88LU	Lung Fibroblast	Ldr	0.28	2.76×10^{-2}	10.1	20
M-101	Bone marrow stroma	Ldr	0.17	10.8×10^{-2}	1.6	62
M-102	Bone marrow stroma	Ldr	0.27	11.8×10^{-2}	2.3	16
M-103	Bone marrow stroma	Ldr	0.07	$14.5 imes 10^{-2}$	0.5	57
M-104	Bone marrow stroma	Ldr	0.06	14.2×10^{-2}	0.4	52
M-105	Bone marrow stroma	Ldr	0.17	16.8×10^{-2}	1.0	34
IL-60	Leukemic cells	Ldr + Fx	0.65	$6.48 imes 10^{-2}$	10.0	5
G-1522	Skin Fibroblast	Ldr	0.19	$4.80 imes10^{-2}$	4.0	23
RL-1477	Skin Fibroblast	Ldr	0.28	$8.93 imes 10^{-2}$	3.1	4
M-498A	Skin Fibroblast	Ldr + Fx	1.11	$5.61 imes 10^{-2}$	19.8	4
.E.	Melanoma	Ldr + Fx	0.21	$10.0 imes 10^{-2}$	2.1	7
1.F.	Melanoma	Ldr + Fx	0.28	$8.79 imes 10^{-2}$	3.2	9
.F.	Melanoma	Ldr + Fx	0.35	7.01×10^{-2}	5.0	17
.N.	Melanoma	Ldr + Fx	0.53	$7.83 imes 10^{-2}$	6.8	25
.Е.	Melanoma	Ldr + Fx	0.61	10.1×10^{-2}	6.0	8
17	Grade 1 astrocytoma	Ldr	0.37	10.9×10^{-2}	3.4	3
18	Grade 3 astrocytoma	Ldr	0.26	3.35×10^{-2}	7.8	24
37	Grade 4 astrocytoma	Ldr	0.31	6.04×10^{-2}	5.1	17

REQUIRED EXPERIMENTAL DATA

Simulation scenario

Multidisciplinary and multiscale problem

Problem related also to the incident **radiation quality**

MONTE CARLO SIMULATIONS

MCDS

W UNIVERSITY of WASHINGTON Monte Carlo Damage Simulation (MCDS) Software

It quickly generates nucleotide-level maps of the clusters of DNA lesions formed by electrons and light ions up to ⁵⁶Fe. Clusters of DNA lesions generated by ionizing radiation are typically composed of one or a few individual DNA lesions formed within one or two turns of the DNA. MCDS simulates damage induction in a segment of DNA uniformly irradiated by monoenergetic particles. Damage within that segment is then scaled in direct proportion to the total amount of DNA in a cell or reported as the number of clusters per unit absorbed dose per unit length of DNA.

To estimate the overall level of DNA damage at the multi-cellular and tissue levels, Monte Carlo simulations need to correct for the effects of spatial variations as well as spatial variations in the nature of the radiation field. MCNP has built-in tallies to record the dose from specific types of particles. The standard dose tallies provided by MCNP can also be modified by a usersupplied dose-response function in the form of a data table consisting of an energyspecific data entry (DE) card with the corresponding dose–response (DF) function specified on a second data entry card.

OUTPUT and LIMITS

MCDS estimates *RBE*_{dsb} in **CPE** (charged particle equilibrium) condition:

$$RBE_{dsb} = \frac{(DSBs \cdot Gy^{-1}Gbp^{-1})_{test}}{(DSBs \cdot Gy^{-1}Gbp^{-1})_{rif.}}$$

 RBE_{dsb} can be translated in RBE_{sf} with the **RMF theory** support.

MONTE CARLO SIMULATIONS

MCDS W UNIVERSITY of WASHINGTON Monte Carlo Damage Simulation (MCDS) Software

MONTE CARLO SIMULATIONS

RADIOBIOLOGICAL PARAMETERS EVALUATION

Note: If $D \gg \alpha/\beta \rightarrow RBE_{DBS} \cong RBE_{SF}$; under this condition, the type of quantity estimated from MCDS is approximatively the same of the ones from the Clonogenic Assay experiments.

The numerically estimated Relative Biological Effectiveness should be compared with the experimental one (the experimental points or even literature data), if available, providing a benchmark of the results and used for plotting the Survival Fraction curves through the α and β parameters.

$$S = e^{-\alpha D - G\beta D^2}$$

RADIOBIOLOGICAL PARAMETERS EVALUATION

Despite MCDS could not take into account the Dose Rate effects and the MLQ model resulted to be not suitable for reproducing the surviving curves in flash applications, the whole simulation process should be adapted and automatized by varying:

- the cell conditions for the test source,
- the test conditions for the reference source,

in such a way to find a "phase space" of possible RBE.

The final idea is to extract one RBE (or more) which fits the laboratory data and correlates its value with simulation and experimental parameters (e.g. repair capacity, etc.).

RADIOBIOLOGICAL PARAMETERS PHASE SPACE

TABLE III. MCDS and RMF model parameters.

Parameter	Symbol	Туре	Value	Explanation/comments
MCDS ^a				
Kinetic energy	Ε	Input (ion specific)	$\sim 10 \text{ eV}$ to 1 keV	Allow range of kinetic energies varies with atomic number
Partial oxygen concentration	pO_2	Input	0–100%	Normoxic cells ~ 5–8%; hypoxic cells <~5%. Small or negligible effect on damage induction for pO_2 values > 10%
Square of the effective ion charge to the speed of relative to speed of light	$(Z_{eff}/\beta)^2$	Computed based on ion type and <i>E</i>	$\sim 1 \text{ to } 10^5$	Metric of radiation quality (track structure)
Total number of strand breaks Gy^{-1} Gbp^{-1}	σ_{Sb}	Default ^b	216.7 Gy^{-1} Gbp^{-1}	Same for all particles and kinetic energies. SSB Gy ⁻¹ Gbp ⁻¹ < σ_{Sb}
Ratio of base damage to individual strand breaks	f	Default ^b	3	Same for all particles and kinetic energies. Small or negligible impact on yield of SSB and DSB
Distance between adjacent clusters of DNA lesions	N _{min}	Default ^b	9 bp	Used to group individual lesions into DSB and non-DSB clusters
Length of chromosome segment	$n_{seg}(u,v,w)$	Default ^b	u = 149200 bp v = 123600 bp w = 267 bp	Decreases from 149.2 kbp to ~25.9 kbp with increasing $(Z_{eff}/\beta)^2$. Controls density of lesions along DNA segment
Simulation of chemical repair and O ₂ fixation	M_0, K, q , and r	Default ^b	$M_0 = 1.740,$ K = 0.3372, q = 946.10, r = 2.15	See Stewart et al. ⁶⁶ for details
RMF Model				
Diameter of cell nucleus	d	Default ^c	~4 µm	Used to compute $\overline{z_F}$. Determines in part the rate of intra- track binary misrepair
Number of DSB per cell or per Gbp of DNA relative to 60 Co γ rays	<i>RBE_{DSB}</i>	Computed ^d	~1 to <4	Varies with pO_2 level and $(Z_{eff}/\beta)^2$
Ratio of LQ parameters for reference radiation	$(\alpha/\beta)_R$	Input ^e	\sim 1 to 10 Gy or more	Reflects repair capacity of cell; determines change in cell sensitivity as function of dose

^aAdditional details of the algorithm and mechanisms of action implemented in the MCDS are discussed in detail elsewhere (Semenenko and Stewart^{64,65}, Stewart et al.^{16,66}).

^bIn general, this parameter may be cell and tissue specific. But as a first approximation, default value suffices among all eukaryotes.

^cFor most human and mammalian cells, a default value of 4 μ m often suffices for analysis of cell survival data, but may be treated as an adjustable, cell-specific parameter. When treated as an adjustable parameter, values in the range from about 2 to 5 μ m appear optimal for a range of mammalian cells.

^dWithin the RMF model, RBE_{DSB} is a computed parameter determined from independently tested (first principle) Monte Carlo simulations (track structure or MCDS) or measurements. As a first approximation, RBE_{DSB} is the same among all eukaryotes for a given value of $(Z_{eff}/\beta)^2$.

^eCell- and tissue-specific input determined from fits to measured data.

LPA-2 SOURCES RBE PREDICTION

Python scripts for automatize the calculations on different cases and by variating 12 parameters per case in a large range of values.

N.	Note	nucleus diameter	cell diameter	% O2 reference source	DBS/Gy GBp reference source	% O2 test source	code note				
1	Mixed/Fixed	20	20	100	8.26772E+00	100	maximum melanoma cell diameter, all nucleus				
2	Mixed	20	20	24	8.14580E+00	24	maximum melanoma cell diameter, all nucleus		MIN	NANY	CTEDC
3	Mixed	20	20	12	7.98829E+00	12	maximum melanoma cell diameter, all nucleus	PARAIVIETER	IVIIIN	IVIAA	SIEPS
5	Mixed	20	20	4	7.45417E+00	4	maximum melanoma cell diameter, all nucleus				
9	Mixed/Fixed	20	20	100	8.26772E+00	100	maximum melanoma cell diameter, all nucleus	DNA			
10	Fixed	20	20	24	8.14580E+00	100	maximum melanoma cell diameter, all nucleus			4.2	-
11	Fixed	20	20	12	7.98829E+00	100	maximum melanoma cell diameter, all nucleus	NDIA	1	12	5
15	Fixed	20	20	1	5.97789E+00	100	maximum melanoma cell diameter, all nucleus	0014	6	20	0
16	Fixed	20	20	0	2.83656E+00	100	maximum melanoma cell diameter, all nucleus	CDIA	6	20	8
17	Mixed/Fixed	12	12	100	8.26772E+00	100	average epitelial cell diameter, all nucleus		-		
18	Mixed	12	12	24	8.14580E+00	24	average epitelial cell diameter, all nucleus	WEM	0	1	99
19	Mixed	12	12	12	7.98829E+00	12	average epitelial cell diameter, all nucleus				
21	Mixed / Fixed	12	12	4	7.4541/E+00	4	average epitelial cell diameter, all nucleus	pO2	0	100	100
25	Tived	12	12	100	8.267722+00	100	average epitelial cell diameter, all nucleus				
20	Fixed	12	12	12	7 98295+00	100	average epitelial cell diameter, all nucleus	m0	0	1000	100
31	Fixed	12	12	12	5 97789E+00	100	average epitelial cell diameter, all nucleus				
32	Fixed	12	12	0	2.83656E+00	100	average epitelial cell diameter, all nucleus	k	0	100	30
33	Mixed/Fixed	6	12	100	8.26772E+00	100	average epitelial cell				
34	Mixed	6	12	24	8.14580E+00	24	average epitelial cell	a	0	1000	2
35	Mixed	6	12	12	7.98829E+00	12	average epitelial cell	-1	-		
37	Mixed	6	12	4	7.45417E+00	4	average epitelial cell	r	0	100	4
41	Mixed/Fixed	6	12	100	8.26772E+00	100	average epitelial cell				
42	Fixed	6	12	24	8.14580E+00	100	average epitelial cell	fbl	0	0.9	2
43	Fixed	6	12	12	7.98829E+00	100	average epitelial cell		•	0.0	_
47	Fixed	6	12	1	5.97789E+00	100	average epitelial cell	CONC	0	5000	2
48	Fixed	6	12	0	2.83656E+00	100	average epitelial cell	00110	•	2000	-
49	Mixed/Fixed	5	5	100	8.26772E+00	100	fibroblast, all nucleus	FNSD	0	1	2
50	Mixed	5	5	24	8.14580E+00	24	fibroblast, all nucleus	THOE	Ŭ	-	2
51	Mixed	5	5	12	7.98829E+00	12	fibroblast, all nucleus	СНМХ	0	10000	10
53	Mixed	5	5	4	7.45417E+00	4	fibroblast, all nucleus	CHINA	0	10000	10
57	Mixed/Fixed	5	5	100	8.26//2E+00	100	fibroblast, all nucleus				
58	Fixed	5	5	24	8.14580E+00	100	Tipropiast, all nucleus	AU			
59	Fixed	5	5	12	7.988292+00	100	TIDFODIAST, All NUCLEUS				
63	Fixed	5	5	1	3.97769E+00	100	fibroblast, all nucleus				
64	rixea	5	1 5	0	12.030302+00	100	Tiproplast, all nucleus				

EXAMPLE OF A SET:

VERY HIGH DOSE RATE SOURCES RBE PREDICTION

• Example of a parameter variation output of one of the different cases and the associated RBE.

LPA-2 SOURCES RBE PREDICTION AND EXPERIMENTAL VALIDATION

WICH ONE OF THE DIFFERENT ESTIMATED RBE THAT SATISFY THE GOAL COULD BE ASSOCIATED TO AN INCREASED REACTION RATE?

BY KNOWING THE PROTON SPECTRUM IT WILL BE POSSIBLE TO ESTIMATE THE EXPECTED RBE OF THE BEAM.

BY VARYING THE SIMULATION PARAMETERS, A CONDITION EQUIVALENT TO THE ULTRA-HIGH DOSE-RATE EFFECT ON A BIOLOGICAL TARGET WILL BE REPRODUCED.

FOR CELL CULTURE IRRADIATIONS THE BIOLOGICAL MATERIAL SHOULD BE INTRODUCED IN A CELL-HOLDER ABLE TO PROPERLY "DRIVE" THE BEAM.

LPA-2 SOURCES RBE PREDICTION AND EXPERIMENTAL VALIDATION

CELL-HOLDER PROPOSAL (ALSO TO BE MODELED IN MCDS-MCNP):

LPA-2 SOURCES RBE PREDICTION AND EXPERIMENTAL VALIDATION

THANK YOU

REFERENCES

Brenner D J, Hall E J, Conditions for the equivalence of continuous to pulsed low dose rate brachytherapy. Int J Radiat Oncol Biol Phys. 1991; 20(1):181-90. DOI: 10.1016/0360-3016(91)90158-z

Buontempo F, Orsini E, Zironi I, Isolan L, Cappellini A, Rapino S, Tartari A, Mostacci D, Cucchi G, Martelli A M, Sumini M, Castellani G, Enhancing radiosensitivity of melanoma cells through very high dose rate pulses released by a plasma focus device. PLoS ONE 13(6): e0199312. https://doi.org/10.1371/journal.pone.0199312

Carlson D J, Stewart R D, Semenko V A, Sandison G A, Combined Use of Monte Carlo DNA Damage Simulations and Deterministic Repair Models to Examine Putative Mechanisms of Cell Killing. RADIATION RESEARCH 169, 447–459 (2008). DOI: 10.1667/RR1046.1

Goorley T, MCNP6.1.1-Beta Release Notes. LA-UR-14-24680 (2014)

Kiefer J, Biological Radiation Effects, Springer-Verlag Berlin Heidelberg, 1990. ISBN: 978-3-540-51089-5

Stewart R D, Streitmatter S W, Argento D C, Kirkby C, Goorley J T, Moffitt G, Jevremovic T, Sandison G A, Rapid MCNP simulation of DNA double strand break (DSB) relative biological effectiveness (RBE) for photons, neutrons, and light ions. Phys. Med. Biol. 60 (2015) 8249–8274. doi:10.1088/0031-9155/60/21/8249

Sumini M, Isolan L, Cremonesi M, Garibaldi C, A Plasma Focus device as ultra-high dose rate pulsed radiation source. Part II: X-ray pulses characterization. «RADIATION PHYSICS AND CHEMISTRY», 2019, 164, pp. 108360-1 - 108360-8. https://doi.org/10.1016/j.radphyschem.2019.108360

Stewart R D, Carlson D J, Butcus M P, Hawkins R, Friedric T, Scholz M, A comparison of mechanisminspired models for particle relative biological effectiveness (RBE). Med. Phys. 45 (11), November 2018 0094-2405/2018/45(11)/e925/28. https://doi.org/10.1002/mp.13207