Scattering_and_NeutrinoDetector@LHC: neutrini da LHC

Assemblea di sezione, Bologna, 4 Feb 2021

Marco Dallavalle

neutrini da LHC

- l'uso di LHC come sorgente di neutrini è uno sviluppo recente. Due esperimenti (SND@LHC e FASERv) nel 2022-2024 puntano alla prima osservazione diretta.
- dai decadimenti di bosoni W,Z, e di guark pesanti prodotti nelle interazioni pp profonde nascono neutrini dei tre sapori e, μ, τ ; neutrini muonici anche dai decadimenti di π ,K
- energia ~100-4000 GeV e intensità dei neutrini variano con l'angolo di diffusione $(\eta = -\ln \tan \theta / 2 \rightarrow \eta = 4.5 = 22 \text{mrad} = 1.3^{\circ}$ $\eta = 8 = 0.7 \text{mrad} = 0.04^{\circ}$)

N. Beni et al., Physics Potential of an Experiment using LHC Neutrinos, http://arxiv.org/abs/1903.06564

fisica coi neutrini a LHC (1)

fisica coi neutrini a LHC (2)

- la sezione d'urto di interazione vN (N=p,n) è misurata in laboratorio per E_v <350 GeV ;
 - molte misure per V_{μ} , qualcuna V_{e} ;
 - 14 interazioni di V_{τ} osservate ;
 - N.B.: σ(1000GeV)/σ(10GeV)~100--> detector può essere piccolo in massa e dimensioni
- da sorgenti di astrofisica misure per $E_{v>}$ >6000 GeV, incertezza molto grande
- LHC può coprire il gap 350-6000 GeV
- LHC può produrre un campione consistente di $\nu_{\tau}, \mbox{ di alta energia}$

la Collaborazione SND@LHC (1)

- Nata dalla fusione di XSEN e SND(SHiP)
- XSEN aveva misurato i fondi macchina di LHC, stimato i flussi di neutrini e dimostrato la fattibilità di un esperimento per neutrini
- SND aveva sviluppato un rivelatore avanzato per l'osservazione di neutrini in SHiP
- LoI a Agosto 2019; approvazione di LHCC
- Technical Proposal sottomesso a Gennaio; in valutazione da LHCC; approvazione possibile per Marzo

January 15, 2021

TECHNICAL PROPOSAL

SND@LHC

Scattering and Neutrino Detector at the LHC

SND@LHC Collaboration

Abstract

⁸ SND@LHC is a proposed, compact and stand-alone experiment to perform measurements with

⁹ neutrinos produced at the LHC in an hitherto unexplored pseudo-rapidity region of 7.2 $< \eta <$

¹⁰ 8.6, complementary to all the other experiments at the LHC. The experiment is to be located 480 m downstream of IP1 in the unused TI18 tunnel. The first phase aims at operating the

¹² detector throughout LHC Run 3 to collect a total of $150 \, \text{fb}^{-1}$

Following the review of the Letter of Intent [1], submitted in August 2020, LHCC rec-¹⁴ ommended the collaboration to proceed with the preparation of a Technical Proposal (TP),

¹⁵ reported herein.

la Collaborazione SND@LHC (2)

- proposta di SND@LHC firmata da 35 istituti, 120 persone, 32% INFN, Bari, Bologna, Cagliari, LNGS, Napoli
- in discussione nella riunione di CSN1 INFN di Febbraio
- ricercatori di Bologna: 5 GrI, 2 GrII, 3 GrV
- altri sono benvenuti!

¹⁶ C. Ahdida²⁴, R. Albanese^{9,c,g}, A. Alexandrov^{9,19,21,c}, M. Andreini²⁴, A. Anokhina²², A. Bay²⁵, ¹⁷ P. Bestmann²⁴, C. Betancourt²⁶, I. Bezshyiko²⁶, A. Blanco³³, M. Bogomilov¹, ¹⁸ K. Bondarenko^{24,25}, W.M. Bonivento⁸, P. Boisseaux-Bourgeois²⁴, A. Boyarsky^{18,d}, ¹⁹ L.R. Buonocore²⁶, A. Buonaura²⁶, S. Buontempo⁹, V. Cafaro⁷, M. Callignon²⁴, ²⁰ T. Camporesi²⁴, M. Campanelli³⁰, V. Canale^{9,c}, F. Cerutti²⁴, N. Charitonidis²⁴ ²¹ M. Chernyavskiy¹⁹, K.-Y. Choi¹⁷, S. Cholak²⁵, V. Cicero⁷, L. Congedo^{6,a}, O. Crespo²⁴, ²² M. Cristinziani⁴, A. Crupano⁷, G.M. Dallavalle⁷, A. Datwyler²⁶, N. D'Ambrosio¹⁰ ²³ A. Dashkina²¹, J. De Carvalho Saraiva³³, P.T. De Bryas Dexmiers D'Archiac²⁵, G. De Lellis^{9,21,c}, M. de Magistris^{9,c}, A. De Roeck²⁴, A. De Rujula³¹, M. De Serio^{6,a}, D. De Simone²⁶ L. Dedenko²², A. Di Crescenzo^{9,c}, L. Di Giulio²⁴, A. Dolmatov²⁰, O. Durhan²⁷, D. Fasanella⁷, ²⁶ F. Fedotovs³⁰, M. Ferrillo²⁶, M. Ferro-Luzzi²⁴, R.A. Fini⁶, P. Fonte³³, R. Fresa^{9,c}, G. Galati^{9,c} J. Gall²⁴, R. Garcia Alia²⁴, V. Gentile^{9,21,c}, V. Giordano⁷, A. Golovatiuk^{9,c}, A. Golutvin^{29,21}, ²⁸ P. Gorbounov²⁴, M. Gorshenkov²¹, E. Graverini²⁵, J.-L. Grenard²⁴, A.M. Guler²⁷, ²⁹ G.J. Haefeli²⁵, E.van Herwijnen²¹, G. Iaselli^{6,a}, P. Iengo^{9,24}, S. Ilieva¹ A Infantino²⁴ ³⁰ A. Iuliano^{9,c}, R. Jacobsson²⁴, M. Jonker²⁴, C. Kamiscioglu^{27,f}, Y. Karyotakis³², E. Khalikov²² Y.G. Kim¹⁴, S.H. Kim¹⁴, D.I. Kolev¹, M. Komatsu¹¹, N. Konovalova^{19,21}, S. Kovalenko³⁴. ³² I. Krasilnikova²¹, S. Kuleshov³⁴, H.M. Lacker¹, O. Lantwin^{26,21}, A. Lauria^{9,c}, K.S. Lee¹⁶, ³³ K.Y. Lee¹³, N. Leonardo³³, G. Lerner²⁴, S. Lo Meo^{7,b}, V.P. Loschiavo^{9,g}, L. Lopes³³, A. Magnan²⁹, M. Maietta²⁴, A. Malinin²⁰, Y. Maurer²⁴, A.K. Managadze²², S. Marsh²⁴ ³⁵ A. Miano^{9,c}, A. Montanari⁷, M.C. Montesi^{9,c}, T. Naka¹², F.L. Navarria⁷, P. Ninin²⁴, ³⁶ S. Ogawa¹², N. Okateva^{19,21}, J. Osborne²⁴, N. Owtscharenko⁴, P.H. Owen²⁶, B.D. Park¹³ ³⁷ G. Passeggio⁹, A. Pastore⁶, M. Patel^{29,21}, L. Patrizii^{7,b}, A. Petrov²⁰, D. Podgrudkov²², ³⁸ G.L. Petkov¹, K. Petridis²⁸, N. Polukhina^{19,21,e}, D. Prelipcean²⁴, A. Prota^{9,c}, F. Queiroz³⁵, ³⁹ A. Quercia^{9,c}, F. Ratnikov²³, F. Redi²⁵, A.B. Rodrigues Cavalcante²⁵, J. Rodrigues ⁴⁰ Fernandez²⁴, T. Roganova²², T. Rovelli^{7,b}, O. Ruchayskiy², T. Ruf²⁴, M. Sabate Gilarte²⁴, ⁴¹ F. Sanchez Galan²⁴, P. Santos Diaz²⁴, O. Schneider²⁵, G. Sekhniaidze⁹, N. Serra^{26,21} ⁴² M. Shaposhnikov²⁵, T. Shchedrina^{19,21}, L. Shchutska²⁵, V. Shevchenko^{20,21}, H. Shibuya¹² ⁴³ S. Shirobokov²⁹, E. Shmanin²¹, S. Simone^{6,a}, G. Sirri^{7,b}, G. Soares³³, J.Y. Sohn¹³, M. Souaya²⁴ ⁴⁴ N. Starkov^{19,21}, J.L. Tastet², I. Timiryasov²⁵, V. Tioukov⁹, N. Tosi^{7,b}, C. Trippl²⁵, ⁴⁵ F. Tramontano^{9,c}, R. Tsenov¹, E. Ursov²², A. Ustyuzhanin^{23,21}, G. Vankova-Kirilova¹, ⁴⁶ C. Vendeuvre²⁴, C. Visone^{9,c}, R. Wanke⁵, J.-K. Woo¹⁵, C.S. Yoon¹³, 47 J. Zamora-Saa³⁴, E. Zaffaroni²⁵ ⁴⁸ ¹Faculty of Physics, Sofia University, Sofia, Bulgaria

- ³Humboldt-Universität zu Berlin, Berlin, Germany
- ⁴Department Physik, Universität Siegen, Siegen, Germany
- 53 Germany
- ⁶Sezione INFN di Bari, Bari, Italy
- ⁷Sezione INFN di Bologna, Bologna, Italy ⁸Sezione INFN di Cagliari, Cagliari, Italy
- ⁵⁷ ⁹Sezione INFN di Napoli, Napoli, Italy
- ¹¹Nagoya University, Nagoya, Japan
- 60 ¹² Toho University, Funabashi, Chiba, Japan

²Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark ⁵² Institut für Physik and PRISMA Cluster of Excellence, Johannes Gutenberg Universität Mainz, Mainz,

⁰Laboratori Nazionali dell'INFN di Gran Sasso, L'Aquila, Italy

- ¹³Physics Education Department & RINS, Gyeongsang National University, Jinju, Korea
- ¹⁴Gwangju National University of Education, Gwangju, Korea
- ¹⁵Jeju National University, Jeju, Korea
- ⁶⁴ ¹⁶Korea University, Seoul, Korea
- 65 ¹⁷Sungkyunkwan University, Suwon-si, Gyeong Gi-do, Korea
- ¹⁸ University of Leiden, Leiden, The Netherlands
- ⁶⁷ ¹⁹ P.N. Lebedev Physical Institute (LPI RAS), Moscow, Russia
- ⁶⁸ ²⁰National Research Centre 'Kurchatov Institute', Moscow, Russia
- ⁶⁹ ²¹National University of Science and Technology 'MISiS', Moscow, Russia
- ²²Skobeltsyn Institute of Nuclear Physics of Moscow State University (SINP MSU), Moscow, Russia
- ²³National Research University Higher School of Economics, Moscow, Russia
- ⁷² ²⁴ European Organization for Nuclear Research (CERN), Geneva, Switzerland
- 73 ²⁵École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- ⁷⁴ ²⁶ Physik-Institut, Universität Zürich, Zürich, Switzerland
- ⁷⁵ ²⁷ Middle East Technical University (METU), Ankara, Turkey
- ⁷⁶ ²⁸H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
- ⁷⁷ ²⁹Imperial College London, London, United Kingdom
- ⁷⁸ ³⁰ University College London, London, United Kingdom
- ³¹Inst. de Estructura de la Materia, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- ³²Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP), Annecy-le-Vieux, France
- ³³Laboratory of Instrumentation and Experimental Particle Physics (LIP), Lisbon, Portugal
- ³⁴ Universidad Andres Bello, Department of Physics, Santiago, Chile
- ³⁵ International Institute of Physics at the Federal University of Rio Grande do Norte, Rio Grande do Norte, 84 Brazil
- ⁸⁵ ^a Università di Bari, Bari, Italy
- ⁸⁶ ^bUniversità di Bologna, Bologna, Italy
- ⁸⁷ ^c Università di Napoli "Federico II", Napoli, Italy
- ⁸⁸ ^d Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- ⁸⁹ ^eNational Research Nuclear University (MEPhI), Moscow, Russia
- ⁹⁰ ^fAnkara University, Ankara, Turkey
- 91 ^gConsorzio CREATE, Napoli, Italy

2

collocazione del rivelatore

- nel tunnel TI18, 480m da ATLAS
- particelle da IP incontrano 100 m di roccia; quelle cariche deviate dai magneti di LHC

il rivelatore di SND@LHC (1)

il rivelatore di SND@LHC (2)

a Bologna, interessamento per

- tre stazioni finali del rivelatore di muoni: barre sottili di scintillatori lette da SiPMs; partecipazione a detector design, elettronica e meccanica
- scan delle emulsioni al microscopio (esperienza di OPERA, upgrade del microscopio)
- analisi degli eventi

Pianificazione, aspettative e note finali

SND INSTALLATION PLANNING													
	Month	Fev		March			Avril	May	June				
	Weeks	5	6	7	8	9	10	11	12	14-17	18-21	22-26	27
LHC schedule		🛧 Test campaign											
Windows available						\star							
Services													

Flavour	$ \begin{vmatrix} \text{Neutrinos i} \\ \langle \mathbf{E} \rangle \ [\text{GeV}] \end{vmatrix} $	n acceptance Yield	$\begin{vmatrix} CC & neutrino \\ \langle E \rangle & [GeV] \end{vmatrix}$	o interactions Yield	$ \begin{vmatrix} NC & neutrino \\ \langle E \rangle & [GeV] \end{vmatrix} $	interact Yield
ν_{μ}	145	2.1×10^{12}	450	730	480	220
$ar{ u}_{\mu}$	145	1.8×10^{12}	485	290	480	110
ν_e	395	2.6×10^{11}	760	235	720	70
$\bar{ u}_e$	405	2.8×10^{11}	680	120	720	44
${\cal V}_{ au}$	415	1.5×10^{10}	740	14	740	4
$ar{ u}_{ au}$	380	1.7×10^{10}	740	6	740	2
TOT		4.5×10^{12}		1395		450

Table 15: Number of neutrinos in the SND@LHC acceptance, charged-current and neutralcurrent neutrino interactions in the detector target, assuming $150 \,\mathrm{fb}^{-1}$. Average energies are also reported.

preparare area, installare servizi

installazione e collaudo

tions	
d	

note finali:

- a HL-LHC statistica x50, ma serve tracker alternativo alle emulsioni
- altre possibilità di fisica: FIPs (particelle con interazione "flebile", quasi impercettibile, che collidono con nucleoni o con elettroni)

