Dipartimento di Fisica e Geologia Università degli Studi di Perugia Istituto Nazionale di Fisica Nucleare Sezione di Perugia Consiglio Nazionale delle Ricerche Istituto Officina dei Materiali di Perugia

ALESSANDRO ROSSI

PHP2021: Physics Highlights Perugia 2020/21 Alta luminosità ad LHC: la Fase2 del Tracciatore di CMS

INFN

•

Large Hadron Collider

Energy Scale

INFN

- High Energy
 - Needed for Higgs production!
 - o ...and whatever other particle(s) is there!
- High Intensity (i.e. Luminosity)
 - Interesting processes quite rare
 - Standard Model testing at high precision needs as many data as possible!

Large Hadron Collider Acceleratore di 27 km circumference

EXAMPLE 1

General Pourpose Experiments:
Extensive Physical program
Cover all type of measurement

possible at LHC

CMS

Dedicated experiment: - b Physics at small angles

AT

CMS

Dedicated experiment: - Heavy Ion Physics

- Quark-gluon plasma

INFN

SOME RESULTS

INFŃ

• RUN-1

- 2009-2013 Standard Model re-calibration
- 2010 Long-range near-side correlation observation (QGP in p-p?)
- o 2012 Higgs Boson Discovery!

SOME RESULTS

- Consolidate Run-2 observation
 - Ie: H \rightarrow ff, VH, ttH, VV, VBS,...
 - separately in different channels
 - differential measurements
 - systematics becoming relevant

0 ...

- Run 3 provides the opportunity to implement novel trigger and new analysis methods and approaches
- o i.e.: Data "Scouting"
 - Also known as trigger-level analysis
 - HLT-reconstructed events with reduced event-content
 - o size ~ 1.5 kB/evt
 - rate ~ 5 kHz established
 - No raw data stored
 - No prompt reconstruction

Machine Upgrades:

- 13 \rightarrow 14 TeV: higher mass reach
- Additional 250 fb-1: factor ~1.7

Detector Upgrades:

- Pixel: Layer1 replacement
- HCAL barrel: install SiPM
- Muon system: install GEM GE1/1 chambers; Upgrade CSC FEE; Shielding against neutron background
- Trigger: heterogeneous Computing at HLT

WHAT NEXT?

• Substantial upgrade of the accelerator: HL-LHC (high luminosity LHC)

INFN PERUGIA

- Push the reach of precision measurements despite the very complex experimental environment
 - Precision Higgs Measurements
 - Higgs Self Coupling
 - Precision Electroweak Measurements
 - Extend BSM searches to smaller production cross sections
 - Precision measurements of rare B decays
 - Heavy Ion Physics

Vector Boson Scattering

- Scattering processes with Vector Bosons (V=W,Z):
 - Reduced QCD activity between the tag jets
 - no color flow between interacting quarks
 - Large pseudorapidity separation and invariant mass between initial quarks (tag jets)
 - $\circ~$ Purely electroweak process $O(\alpha^{6}{}_{\text{EM}})$ at LO
 - Direct access to Spontaneous Symmetry Breaking without Higgs
 - Probe particularly sensitive to contributions from new physics thanks to the quartic vertex

- 4 LO Feynman diagrams for ssWW processess
 - EWK ssWW: pure EWK processes (signal)
 - QCD ssWW: QCD interactions between partons (irreducible background)
- QCD and EWK ssWW production processes have similar xSec
- Boson polarization could be an additional probe

Effective Field Theory

. . .

Events

- Direct detection of New Pbysics could be out of the possible experimental reach
 - Push the experimental limits in a model independent way
 - Measurement of Effective Field Theory parameters

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{n=1}^{\infty} \sum_{i} \left(\frac{c_i^{(n)}}{\Lambda^n} \right)_i^{(n+4)}$$

- Power series of all the possible parameters
- Enanchement on distribution tails
- Some processes mediated by effective operator could violate unitarity
 - Add bounds to constraint unitarity

LHC Schedule

INFN

- High Luminosity upgrade after LS3
- Peak Luminosity ~7.5x10³⁴cm⁻²s⁻¹
- Expected Pile-up ~200
- Higher rates and radiation dose wrt Run3

[cm⁻²s⁻¹]

uminosity.

- Crab cavities
- (some) New Magnets (11T)
- Civil engineering:
 - New acces shafts
 - New service tunnels
 - ...and more!

Phase2 Pile Up

INFŃ

- Run2: Mean PileUp 37
- Run3:
 - Mean PileUp ~55
- Phase2
 - Mean PileUp 140-200!

Pile Up: Number of interactions in a single bunch crossing

CMS Phase2 Upgrade

Trigger/HLT/DAQ

High Luminosity Requirements

- Increased granularity: In order to ensure efficient tracking performance with a high level of pileup
- **Reduced material in the tracking volume:** The exploitation of the high luminosity will greatly benefit from a lighter tracker
- **Contribution to the level-1 trigger**: The selection of interesting physics events at the first trigger stage becomes extremely challenging at high luminosity
- **Extended tracking acceptance**: The overall CMS physics capabilities will greatly benefit from an extended acceptance of the tracker
- Radiation tolerance: The upgraded tracker must be fully efficient up to a target integrated luminosity of 3000fb⁻¹
 - Outer layers "far away" from interaction point will see >10¹⁴MeV neutron equivalent fluence
 - more than innermost strip tracker layers at 20 cm for today's trackers after 10 years of LHC running

Why change the current Tracker

INFŃ

- A big part of current strip tracker will become completely in-operational due to either leakage current or full depletion voltage limitations at 1 ab⁻¹
 - full tracker replacement needed for HL-LHC program

Phase-2 CMS Inner Tracker

INFN

• **TBPX** : **T**racker **B**arrel **P**i**X**el

• TEPX : Tracker Endcap PiXel

• **TFPX** : **T**racker **F**orward **P**i**X**el

Inner Tracker Overview

INFŃ

- 3892 modules
- 2×10^9 pixels (124×10^6 in Phase-1 upgrade)
- 4.9 m²
- Hybrid modules with:
 - 2 (1 × 2) readout chips (1156 modules)
 - 4 (2 × 2) readout chips (2736 modules)
- Occupancy < 0.1%
- Coverage up to |η| = 4.0

Simple mechanics:

TFPX

TBPX

- Can be removed for maintenance
- Barrel splits in half at z ~ 0
- Disks with flat geometry (no turbines)

Features a two-phase CO₂ cooling system (nominal T of the coolant -35°C)

TEPX

• 50-60 kW power budget

Luminosity monitor with TEPX

TEPX Disk 4 Ring 1: fully dedicated to BRIL (Beam Radiation Instrumentation and Luminosity)

- Read Out Chip (ROC)
 - Being developed by the RD53
 Collaboration
 - For both ATLAS and CMS inner detectors
 - \circ low-threshold (\lesssim 1000 e-)
 - high hit and trigger rate:
 - 160 Mbps control & up to 4 x 1.28 Gbps output links

• Simple design

- High Density Interconnection (HDI)
 - Flexible PCB containing only passive components
 - o 2 to 4 ROCs per module
 - HV capable up to 1000 V

Sensors: type and geometry

PHP2021

- expected signal / threshold > 3 at $\Phi_{eq} \approx 8 \times 10^{15}$ cm⁻²
- Track density → reduce pixel size by factor of six
 Different geometry under study
 - 25 x 100 μm^2 , 50 x 50 μm^2 , 25 x 100 μm^2 «bricked»
- High efficiency → pixel cell design
 Isolation, biasing scheme, layout details
- Study n-in-p planar sensors
- 3D sensors under investigation for layer 1 (6% of the total area) and innermost layer of the TFP

Serial Powering

- Upgraded Inner Tracker power consumption: 50 kW
- ROC in 65 nm technology and with high granularity:
 - high supply current
- Direct parallel powering requires too much material

- The serial powering is the unique scheme compatible with HL-LHC physics
- All the elements in a chain see the same current (by construction) while the voltage is equally shared if all elements represent the very same and constant load
- This is the task of the Shunt LDO: no additional ancillary components are needed

Phase-2 CMS Outer Tracker

• **TBPS** : Tracker Barrel with **PS** modules • **TEDD** : Tracker Endcap Double Disk

• TB2S : Tracker Barrel with 2S modules

Phase-2 CMS Outer Tracker

INFN

- Outer Tracker coverage up to η~2.5
 Tracking up to η~4 thanks to InnerTracker
- Two different type of technology: microstrips and macro-pixels
- Tilted barrel geometry
 - o Better trigger performances
 - o Reduction on number of modules

Tracks for L1 Trigger

INFŃ

- HL-LHC will deliver an high instantaneus luminosity with a high PileUp
- It's fundamental to be more selective at L1 trigger in order to keep data rate under control

Include Tracks on L1 decision

Today's L1 threshold at 200 PU ~ 4 MHz

- Tracks needed for trigger decision
- Lepton threshold improvement
- Possibility for new triggers (e.g.
- displaced or disappearing tracks)

Tracks for L1 Trigger

INFŃ

- HL-LHC will deliver an high instantaneus luminosity with a high PileUp
- It's fundamental to be more selective at L1 trigger in order to keep data rate under control

Include Tracks on L1 decision

- Most of charged particles have low p_T
- Perform a p_T selection at readout level in order to reduce the L1 tracking input data size

Tracks for L1 Trigger

4.0

Phase-2 Tracker Modules

INFŃ

- Two type of modules:
 - o 2S Modules
 - 2 different spacing : 1.8mm & 4mm
 - 2 micro strip sensors with 5cm x 90µm strips
 - Sensor dimension are 10cm x 10cm
 - o two column of 1016 strips

- PS Modules
 - 3 different spacing : 1.6mm & 2.6mm & 4mm
 - One strip sensor: 2.5cm x 100µm strips
 - One macro Pixel sensor : 1.5mm x 100µm pixels
 - Sensor dimension 5cm x 10 cm
 - two column of 960 strips
 - o <u>~30k pixels</u>

PHP2021

Modules Service Systems

- Module houses both frontend and service hybrids
- Service hybrid(s) has:
 - o lpGBT
 - Low Power Gigabit Transceiver
 - o VTRx+
 - Versatile Link Plus Transceiver
 - DCDC converters
- Frontend hybrids have readout chip and data concentartor

HL-LHC common development

Modules Service Systems

Module houses both

- Each module is a functional unit individually connected to:
 - backend power system
 - DTC (Data, Trigger and Control) system via Optical link
 - no token control rings
 no intermediate power grouping

readout chip and data concentartor

2S module design

2S module design

PS module design

- Strip-strip Module (2S)
 - CMS Binary Chip (CBC) reads both sensor and identify stubs

- Strip-strip Module (2S)
 - CMS Binary Chip (CBC) reads both sensor and identify stubs

- Strip-strip Module (2S)
 - CMS Binary Chip (CBC) reads both sensor and identify stubs

- Strip-strip Module (2S)
 - CMS Binary Chip (CBC) reads both sensor and identify stubs

- Strip-strip Module (2S)
 - CMS Binary Chip (CBC) reads both sensor and identify stubs

- Strip-strip Module (2S)
 - CMS Binary Chip (CBC) reads both sensor and identify stubs
- Pixel-Strip Module (PS)
 - Short-strip ASIC (SSA) sends strip cluster and L1 data to the MPA which combines with pixel information and create stubs

- Strip-strip Module (2S)
 - CMS Binary Chip (CBC) reads both sensor and identify stubs
- Pixel-Strip Module (PS)
 - Short-strip ASIC (SSA) sends strip cluster and L1 data to the MPA which combines with pixel information and create stubs

- Strip-strip Module (2S)
 - CMS Binary Chip (CBC) reads both sensor and identify stubs
- Pixel-Strip Module (PS)
 - Short-strip ASIC (SSA) sends strip cluster and L1 data to the MPA which combines with pixel information and create stubs

- Strip-strip Module (2S)
 - CMS Binary Chip (CBC) reads both sensor and identify stubs
- Pixel-Strip Module (PS)
 - Short-strip ASIC (SSA) sends strip cluster and L1 data to the MPA which combines with pixel information and create stubs

- Strip-strip Module (2S)
 - CMS Binary Chip (CBC) reads both sensor and identify stubs
- Pixel-Strip Module (PS)
 - Short-strip ASIC (SSA) sends strip cluster and L1 data to the MPA which combines with pixel information and create stubs

INFŃ

Strip-strip Module (2S)

- Pixel-Strip Module (PS)
 - Short-strip ASIC (SSA) sends strip cluster and L1 data to the MPA which combines with pixel information and create stubs

Binary Read Out

- No info about collected charge
- Binary (0/1) info for each strip

STUB:

- ightarrow Position on Bottom sensors/MAPSA
 - Cluster postion, half strip precision
- ightarrow Bend information
 - difference between top/bottom position

- Strip-strip Module (2S)
 - CMS Binary Chip (CBC) reads both sensor and identify stubs
- Pixel-Strip Module (PS)
 - Short-strip ASIC (SSA) sends strip cluster and L1 data to the MPA which combines with pixel information and create stubs

- Strip-strip Module (2S)
 - CMS Binary Chip (CBC) reads both sensor and identify stubs
- Pixel-Strip Module (PS)
 - Short-strip ASIC (SSA) sends strip cluster and L1 data to the MPA which combines with pixel information and create stubs
- CIC concentrator chip
 - Receives stubs and L1-data and pack them

Data AcQuisition

- DTC (Data, Trigger and Control) boards readout and control module
 - ACTA standard
- Bi-directional optical links
 - \circ 2.56 Gb/s DTC \rightarrow Module
 - clock, trigger, fast-commands and programming
 - \circ 5.12 or 10.24 Gb/s Module \rightarrow DTC
 - L1 and DAQ data
- L1 data at 40 MHz
- DAQ data (after L1) at 750 kHz

L1-tracking constraints and requirements

- ~15,000 stubs per bunch crossing @ 200 PU → Stub bandwidth O(20) Tb/s OFEN
- ~4 μs available for track finding (12.5 μs total L1 latency)
- Present solution derived from two all-FPGA developments:
 - Time-Multiplexed Track Trigger (TMTT)
 - Tracklet algorithm
- Both **tested on HW demonstrator** to measure latency and estimate resource utilization and performance

L1-tracking: aglorithms

- Time-Multiplexed Track Trigger
 - $\circ~$ 8 Geometrical Division in φ
 - Some data duplication
 - Hough Transform
 - From r ϕ to q/p_T ϕ_0 plane
 - o Kalman Filter
 - Repeat until all stubs are added
 - $\chi 2$ used to reject false candidates

• Tracklet Method

- $\circ~$ 28 Geometrical Division in φ
- No data duplication
- Road search

Latency ~3.3µm

- Pair of adjacent layers used to form seed called a tracklet
- \circ Linearized $\chi 2$ fit
 - Complex calculations pre-computed and stored in look-up tables
 - Remove duplicates by checking for shared stubs and retain track with the lowest $\chi 2/\text{ndf}$

L1-tracking: aglorithms

Tilted Barrel Geometry

Tilted Barrel Geometry

Material Budget

INFN

 Material budget much reduced wrt Phase0/1 detector despite an increase in the number of channels

PHP2021

Powering & Cooling

2S

 \bigcirc

•

 \bigcirc

PS

Some highlights from beam tests

7.8°

20 At (ns)

Performances: Phase-1 vs Phase-2

Track parameters resolution of Phase-2
 Significant extention at higher η tracker improve wrt Phase-1

• Higher granularity and less material

Performances: High PileUp

- Dip around ±1.2n due to Barrel/endcap transition in Inner Tracker
 - Due to TDR geometry, reduced by a factor ~ 2 o Fake rate below 2(4)% at 140(200)PU 0 with optimized geometry

High tracking efficiency (~90%) also at 200PU

MODULE ASSEMBLY

- Quite complex assembly procedure
- Stringent mechanical requirements
 - Precise sensor-to-sensor alignment crucial for stubs finding algorythm
 - Main constriants:
 - Shift \perp to strip: <50 μ m
 - Shift // to strip: <100µm
 - Relative sensors rotation: <400µm
 - Distance between sensors: ±100µm wrt nominal

MODULE ASSEMBLY

- Assembly based on fixture
 R&D almost completed
- Pre-production \rightarrow 2021
- Production \rightarrow 2022/2024

- CMS will restart to take data soon!
 - Probably in 2022 Q1
 - Run-3 operation will last at least 3 years
- ...meanwhile:
 - Complete the R&D and start the production of all the pieces needed for the HL-LHC phase

ADDENDUM: MUONE

Introduction

68

- Anomalous magnetic moment of a lepton as precison test for SM
 - Can be (very) precisely calculated in SM framework
 - But... it's flavor dependent!

- Electron
 - $\circ~g_{\rm e}\mbox{-}2$ determined with high precision
 - Sensitivity to new particles limited by a ~(m/M)² factor
- Muon
 - Sensitivity to an higher mass region [GeV, TeV]
 - State of art: 3σ discrepancy from SM prediction

State of the art

$$a_{\mu}(exp) = 11659209.1(5.4)_{stat}(3.3)_{syst} \cdot 10^{-10}$$

$$a_{\mu}(exp) - a_{\mu}(SM) = (27 \pm 7) \cdot 10^{-10}$$

- Most precise measurement from E821 at Brookhaven National Laboratory (BNL)
- Muon g-2 experiment at FNAL want to inprove the accuracy by a factor 4

If
1. Theory remain as it is
2. No relevant change to central value
then

$$\Delta a_{\mu} = a_{\mu}(exp) - a_{\mu}(the) = 6.7\sigma$$

- Traditionally computed via a dispersion integral using hadronic production cross sections in electron-positron annihilation at low energies
- QCD lactice calculation still not competitive
- A novel approach proposed: MUonE
 - $\circ~$ A high precision measurement of $a_{\mu}{}^{\text{HLO}}$ with a 160 GeV μ beam on e $^{-}$ target at CERN
 - hadronic contribution to the effective electromagnetic coupling, ΔαH(q2) for space-like squared four-momentum transfers q² = t < 0, via scattering data

$$\begin{aligned} a^{HLO}_{\mu} &= \frac{\alpha}{\pi} \int_0^1 (1-x) \Delta \alpha_{had}(t(x)) dx \\ t(x) &= \frac{x^2 m_{\mu}^2}{x-1} \quad (0 \leq -t \leq +\infty) \qquad \qquad \text{t:m} \end{aligned}$$

t : momentum trasfered in the reaction

How to measure?

INFŃ

• $\Delta \alpha_{had}$ (t) can be extracted from μ -e elastic scattering using a high energy muon beam (E~160 GeV) on electron low-Z target

- Experimental kinematic limit
 0 < -t < 0.161GeV²
 - or
 - o 0< x <0.93
- MUonE will measure ~87% of the area
 - Can be extrapolated to the 100% with functional model of $\Delta \alpha_{had}$ (t)

Key element

INFŃ

- The key elemet to achieve the precision required is the measure of the scattering angles Muon scattering angle (mrad)
- **Experimental needs:**
 - PID to separate electron and \bigcirc muon
 - ECAL + μ -filter
 - Precise tracking for angles Ο
 - Tracker
 - Electron energy measurement Ο to add redoundancy and reduce systematics
 - ECAL

Electron scattering angle (mrad)

The Detector

A Tracking Station

- Requirements:
 - Dimensions: 10 cm x 10 cm
 - Single hit resolution: $\sigma \leq 20 \ \mu m$
 - Fast timing (we have to cope with O(50 MHz) μ)
 - \circ Thickness: d ≤ 300 μm

Technology

INFŃ

- Best solution:
 - o 2S module from CMS
 - Or better 2 x 2S module for each plane
 - To get x-y info

- Enough spatial resolution
- Stub instead of hits
- Fast stub readout O(40MHz)

- For particle ID and background rejection
- Radiation hardness is required because of the intense μ beam
- Based on CMS ECAL system
 - PWO crystal
 - APD sensors
 - FEE based on MGPA chip + 12bit ADC
 - DAQ based on Serenity board
 - Laser Calibration System

The Beam

- 160GeV/c muon beam @ M2 CERN SPS
- Beam spot size at the entrance of MUonE
 - $\circ \sigma_x = 26 \text{mm}$
 - $\circ \sigma_v = 27 \text{mm}$
- Very small beam divergence $\circ \sigma_{x'} = 0.3 \text{mrad}$
 - $\circ \sigma_{Y'} = 0.2 \text{mrad}$
- Momentum Resolution
 - At present BMS provides ~0.8%

Mean x -2.358 Mean v -13 15

Trigger & DAQ

- The full DAQ system is based on the CMS Serenity Board (Track Trigger)
- No trigger foreseen
 - Stub info have sufficient information and resolution
 - A selection could be added to reduce the data rate on disk
- Expected beam rate 50MHz asyncronous wrt tracker readout (40MHz)
 - Optimization via threshold level and comparator operation mode optimization

Mechanics

- TBPS
 - Flat Part: planks
 - Tilted Part: rings
- TB2S
 - Ladder support structure
- TEDD
 - Building block: DEE (half disk)
 - Double-Disk to be hermetic also with rectangular modules

Module type and variant		TBPS	TB2S	TEDD	Total per variant	Total per type
26	1.8 mm	0	4464	2792	7256	7680
23	4.0 mm	0	0	424	424	7080
PS	1.6 mm	826	0	0	826	5616
	2.6 mm	1462	0	0	1462	
	4.0 mm	584	0	2744	3328	
Total		2872	4464	5960	13296	

- Irradiation campaign to study the sensors behavior and perform a technology choice:
 - Take nominal expected max. fluences for outer (2S) and inner (PS) regions after 3000fb⁻¹
 - o Consider the approximate mixture of neutrons and charged hadrons

Irradiated Sensors at Beam Test

- Sensor irradiated with neutron only at JSI
- CBC3 readout chip (almost final)
- Charge collection reflected in hit efficiency as a function of threshold
 - o FZ290 can tolerate higher thresholds
 - $\circ~$ Only after long annealing (200 days) at ultimate $5 \times 10^{14} \text{neq/cm}^2$ both materials are comparable
- dark noise occupancy was measured:
 - \circ ~ lower than 10^{-5} while expected hit occupancy is $^{\sim}10^{-2}$
 - Scale with annealing (current) and not with thickness

INFŃ

• CERN M2 \rightarrow between BMS and COMPASS

1/ µ-e setup upstream of present COMPASS experiment, i.e. within M2 beam-line

- More upstream of Entrance Area of EHN2 (Proposed by Johannes B. & Dipanwita B.)
- Will require the removal of some components

Tracker Readout

- The tracker readout is a simplify version of the CMS backend
 - Communication between module and backend system established over a pair of optical fibers with IpGBT protocol
 - 2.56Gb/s downlink for Clock, fast command and slow control
 - 5.12Gb/s uplink for data transmission
 - MUonE will be without a trigger and readout the 40MHz stub data stream
 - Fraction of events with more than 3 stub on a CBC $\leq 0.1\%$
 - Main constraint due to CIC
 - $\circ~$ 16 stub transferred in 8BX per CIC \rightarrow 32 stub in 16BX per module
 - 1.25 muon per BX expected \rightarrow enough room to handle fluctuations

DAQ Frontend

- Serenity Board + 2 daughter card with KU15P
- A single Serenity card can handle 12 tracking station
 72 modules
- Expected data throughput
 - 16 bit for a stub
 - o 64 bit header
 - o 3 stub per BX
 - o 40Mhz rate
 - ~20Gb/s per station
 - ~240Gb/s ouput per Serenity

On the serenity

- Decode 8BX CIC packets into stubs per BX
 - Firmware being developed in CMS
 - Event packing custom for MUonE
- Online selection?
 - Assuming no selection at the moment, only potentially event tagging O
- Realistically some simple event selection could be enabled if required (e.g. stub counting) o
- In worst case, prescale can be applied, but probably unnecessary
- Transfer to local storage
 - Output formatting needs to be specified

2021 Pilot Run

- In Q4 of 2021 a MUonE pilot run is foreseen
 - 2 tracking station + 3 upstream planes (x,y) + ECAL prototype
 - 3 weeks of beam time at M2
 - $\circ~$ 1 year to build and integrate the detector

- Studies to optimize the resolution
 - CMS beam test indicate that the best resolution is obtain with a tilt of ~15° (268mrad)

- Detailed simulation studies ongoing
 - Target: optimize the tilting angle

Tracker Mechanics: enclosure

INFŃ

- Two patch panel for each couple of module
 - One for electrical and optical connections
 - One for hydraulic feedtrhoughs