Delayed neutrons from material activation underground

- Problem: Passing muons can produce isotopes that β-decay with half lives on the O(ms) to O(s) scale that decay to highly excited daughter nuclei that can emit a neutron with energy O(MeV)
 - These events are not remoted by prompt veto cuts
 - Lifetimes that are long compared to the time between muons may be impossible to correlate
- People:
 - Igor, Susana, Sagar, Teena, Shawn
- Procedure:
 - FLUKA simulation of muons to determine activation rate of muons
 - G4DS simulation to determine background rates from relevant isotopes
- Mitigation strategy:
 - Neutron veto cuts and delayed muon tags
 - Need full MC model to finalize exactly what these cuts will be

Current status and results

- These will naturally come out of the FLUKA simulations that Sagar is running, with a dedicated analysis of the output
 - Teena is picking this work up from Sagar, to continue the next steps
- Igor is running muon simulations in Geant4, to compare with Sagar's and Teena's FLUKA simulations

Isotope Yield (per μ) ⁸He $(t_{1/2} = 119 \text{ ms}) \rightarrow 1.59\text{E-5}$ ⁹Li $(t_{1/2} = 178 \text{ ms}) \rightarrow 1.2\text{E-4}$ ¹¹Li $(t_{1/2} = 8.75 \text{ ms}) \rightarrow 3.44\text{E-5}$ ¹¹Be $(t_{1/2} = 13.76 \text{ s}) \rightarrow 7.99\text{E-5}$ ¹³B $(t_{1/2} = 17.3 \text{ ms}) \rightarrow 1.0\text{E-4}$ ¹⁷N $(t_{1/2} = 4.17 \text{ s}) \rightarrow 7.60\text{E-5}$ ²²F $(t_{1/2} = 4.23 \text{ s}) \rightarrow 2.2\text{E-6}$ ²⁴F $(t_{1/2} = 382 \text{ ms}) \rightarrow 1.2\text{E-6}$ ²⁷Na $(t_{1/2} = 301 \text{ ms}) \rightarrow 2.6\text{E-8}$ ³¹Al $(t_{1/2} = 644 \text{ ms}) \rightarrow 1.28\text{E-6}$ ³²Al $(t_{1/2} = 31.9 \text{ ms}) \rightarrow 1.4\text{E-7}$

FLUKA simulations of muons on ⁴⁰Ar, by Andrew Erlandson for DEAP

DS-20k geometry in FLUKA by Sagar

Comparison of GEANT4 and FLUKA muon activation in LAr for beta-n isotopes.

Vertical muon E=270 GeV in the center of 50 tonn LAr cylinder.

	Suzanna	Geant4 (Igor)	Geant4 (Igor)	Fluka (Alexandre			
	(estimation	QGSP_BERT_HP	QGSP_BIC_HP	Bakalyarov)			
	from DEAP						
	simulation)						
Isotopes		Yield					
		(per muon)					
8He	1.59E-5	$<1.10^{-6}$	2·10 ⁻⁶	$1.30 \cdot 10^{-5}$			
9Li	1.2E-4	$< 1.10^{-6}$	7·10 ⁻⁶	3.80·10 ⁻⁵			
11Li	3.44E-5	< 1.10-6	<1.10-6	5.00·10 ⁻⁶			
11Be	7.99E-5	$< 1.10^{-6}$	3.10-6	$1.10 \cdot 10^{-5}$			
13B	1.0E-4	$< 1.10^{-6}$	1.10^{-6}	$3.00 \cdot 10^{-5}$			
17N	7.60E-5	3·10 ⁻⁶	6·10 ⁻⁶	$2.10 \cdot 10^{-5}$			
22F	2.2E-6	8·10 ⁻⁶	7·10 ⁻⁶	5.00·10 ⁻⁶			
24F	1.2E-6	$< 1.10^{-6}$	$<1.10^{-6}$	$< 1.00 \cdot 10^{-6}$			
27Na	2.6E-8	1.5.10-5	4 ⋅10 ⁻⁶	2.00 ·10 ⁻⁶			
31Al	1.28E-6	$1.7 \cdot 10^{-6}$	1.9·10 ⁻⁵	2.20·10 ⁻⁵			
32Al	1.4E-7	3.10-6	8·10 ⁻⁶	1.00.10-6			

Comparison of GEANT4 and FLUKA muon activation in LAr for beta isotopes.

Vertical muon E=270 GeV in the center of 50 tonn LAr cylinder.

	Suzana	Geant4 (Igor)	Geant4 (Igor)	Fluka (Alexandre
		QGSP_BERT_HP	QGSP_BIC_HP	Bakalyarov)
Isotopes			Yield	
			(per muon)	
41Ar	0.2113	0.00323	$2.545 \cdot 10^{-3}$	$3.274 \cdot 10^{-3}$
40Cl	0.0023	0.0014	$14.14 \cdot 10^{-4}$	8.570.104
39Cl	0.0159	0.00714	9.817·10 ⁻³	$6.960 \cdot 10^{-3}$
39Ar	0.1626	0.07675	7.8193·10 ⁻²	7.290·10 ⁻²
38Cl	0.0123	0.00524	10.102·10 ⁻³	$5.350 \cdot 10^{-3}$
37S	0.0016	0.00185	$1.975 \cdot 10^{-3}$	$8.720 \cdot 10^{-3}$
37Cl	0.0134	0.01054	1.5858·10 ⁻²	6.860·10 ⁻⁴
35S	0.0108	0.00498	$6.599 \cdot 10^{-3}$	4.830·10 ⁻³
34P	0.0014	0.00063	$1.264 \cdot 10^{-3}$	$6.270 \cdot 10^{-4}$
33P	0.0043	0.00174	$2.339 \cdot 10^{-3}$	$1.890 \cdot 10^{-3}$
32P	0.0050	0.00138	$2.982 \cdot 10^{-3}$	$2.060 \cdot 10^{-3}$
31Si	0.0018	0.00076	9.5·10 ⁻⁴	$7.070 \cdot 10^{-4}$
28Al	0.0019	0.00036	$5.54 \cdot 10^{-4}$	$6.600 \cdot 10^{-4}$
10Be	0.0010	< 0.00001	$3.7 \cdot 10^{-5}$	$2.150 \cdot 10^{-4}$
3H	0.0161	0.00418	5.216·10 ⁻³	$3.274 \cdot 10^{-3}$

Prospects and plans

- Problems:
 - No significant roadblocks are foreseen
 - The biggest challenge may be if we cannot practically achieve sufficiently muon veto windows and the neutron veto cuts alone aren't enough, but this seems unlikely to be a major problem
- Uncertainties:
 - There are very significant uncertainties on the muon activation physics
- Plans:
 - Now that Sagar has working FLUKA simulations and has simulated muons in the detector, the path forward is fairly straightforward
 - Mostly, this will be a matter of time, as Sagar passes the baton to Teena
 - A lot of this work comes naturally from the work already being done for the prompt cosmogenic neutrons
 - Sagar is preparing an internal note for his work, which will cover most of what is needed
 - Once we have results from the delayed neutron analysis from this work, a note will be written summarizing that
 - We need to have the data files for muon flux in Gran-Sasso Hall C at CNAF computer