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BLOB

(Boltzmann Langevin One Body)

 BLOB describes the time evolution of the one-particle density (of a nucleon in the
phase space) by solving numerically a semi-classical, one-body transport equation;

* Nucleons interactions are modeled as two-body inelastic collisions;

* Jo solve the transport equation, BLOB samples the density distribution in phase
space with test particles;

* Jest particles are under the action of an effective Mean Field nuclear potential;

 The BLOB final state (output) is a probability density function (PDF) of finding a
nucleon in a point of the phase space. This PDF is built starting from the
coordinates of the test particles at the end of the reaction.
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BLOB

(Boltzmann Langevin One Body)

» A “liquid” and a “gas” phase are defined by
applying a clustering procedure to the output PDF;

* Each liquid phase neighborhoods stands for a large
fragment. The rest of the test particles, the gas
phase, represents the nucleons emitted in the first
part of the reaction.

 Depending on the impact parameter b, one can
have up to 3 large fragments.




Dataset

Dimensionality reduction

« BLOB output consists of two six dimensional (phase space) distributions: one
for protons and one for neutrons;

* Such an output can be discretized binning the phase space;

 Premade 6D Convolutional Layers are not available: we reduce the
dimensionality of the data to 3 DoF;

 The iInformation loss of this process doesn’t invalidate our method, but the
resulting “images” are sparse and not smooth;



Dataset

Dimensionality reduction

* For each test particle, we consider only:
- P = the modulus of its momentum,
- g = Iits angle with the collision axis,
- r = Its distance from the closest large fragment center;

* Large fragments are represented by 500*A test particles. All
the particles belonging to a fragment have r=0 and same q;

 The momentum p of each test particle is sampled from a
gaussian distribution (with mean = large fragment momentum
and sigma = excitation energy).

* The test particles are divided into 3 groups, one for each large
fragment. Each group is “assigned” to a single color channel
(RGB);
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Variational Autoencoder
The basics
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Variational Autoencoder

Our initial goal

* QOur initial idea was to build a Deep NN that could “understand” the physics
behind the BLOB model (“all the information is contained in b”);

 We hoped that the VAE would encode each image in its b and autonomously
organize the latent space according to b (unsupervised approach);

e To this aim:

- we made a preliminary study of the dataset (PCA) to understand how to

compress it, but there was no subset of features that could adequately describe
the variability of the dataset;

- we designed the encoder (3D CNN) to predict the b of a given image,
- we tested 1D latent space,

- we developed a symmetic decoder to generate synthetic data.
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Variational Autoencoder

New attempt

* Unfortunately, our model could not emulate the PDFs;

* Probably, given the characteristics of the dataset, the encoder compression was too
high;

 Therefore, we switched to a 2D latent space;
* Nevertheless, this new latent space was not disentangled and often collapsed,;

* Jo solve these problems, we added a new task: a Predictor (regression task, z vs b)
forcing the latent space to organize itself according to b (semi-supervised approach);

» Hypertuning (VGG-like conv blocks, number of filters) + asymmetric decoder to
further improve the quality of the reconstructed PDFs.
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Variational Autoencoder

The final working model

* |nput tensors: shape (32, 32, 32, 3), each labelled with its impact parameter
(we are working with a downsized dataset because the training is easier and
faster);

3D Convolutional encoder:;
o 2D latent space;

* Predictor (regression task, latent vector vs b) to force latent space
disentangling;

 Asymmetric decoder.
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Variational Autoencoder

Our results: learning curves
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Variational Autoencoder

Our results: 2D latent space
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Variational Autoencoder

Our results: momentum modulus P

X Projection

|
—— INput :
- Generated

0 100 200 300 400 500 600
Absolute value of momentum (MeV)

15



Variational Autoencoder

Our results: sin(q)
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Variational Autoencoder

Our results: r

Z Projection

|
y I | I I I |npUt
100 4 E i i i - Generated

Marginal PDF (r)
—
<

=
<
w

0 5 10 15 20 25 30
r (Fermi)
17



Perspectives
VAE, GAN and Graph Neural Networks

* Short-term goals:
- Porting our model in C++ to interface it with Geant4;
- Adding the interaction energy as an input for the VAE;

 Mid-term goals:
- adding A and Z of the target as inputs for the VAE

* |Long term goal;
- Graph Neural Network (to simulate the whole nuclear reaction).

* + feasibility study: GAN (avoid the collapse of our network);
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Summary

* Final goal: design a Deep Generative Model to emulate the results of BLOB in
order to interface its trained decoder to Geant4;

» 1st attempt: unsupervised learning with a “physical” interpretation of the
learning process. Unsuccessful;

 Subsequent approaches: data-driven, “unphysical” optimization of the VAE
+ semisupervised learning;

o Satisfactory reconstruction results, but still too little control over the
generative phase to finalize the model.

Thank you for your attention!
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Hadrontherapy

and Monte Carlo (MC) simulations

* Hadrontherapy: a form of radiation
therapy that involves the use

of proton and carbon ions
(“hadrons”);

 Hadrons are heavier and have more
energy than electrons.
Consequently, they are more
effective in destroying cancer cells;

 MC codes are used to Initialize and
validate treatment planning
algorithms (dosimetric calculations).




Geant4 for dosimetric calculations

Limitations at low energies

e (Geant4 is a Monte Carlo toolkit;

* (Geant4 can simulate the body of a patient by importing his Computed
Tomography scan in DICOM format;

» Several models for electromagnetic interactions are implemented in Geant4

but there Is no dedicated model to describe inelastic nuclear reactions below
100 MeV/u;

» Solution: interface Geant4 with BLOB (Boltzmann Langevin One Body), a
numerical model developed to simulate heavy ions collisions.



Using Deep Learning

To work around BLOB limitations

* Problem: BLOB computation
time is too large for any practical
application;

e |dea:
- Bin the PDF outputs of BLOB to
form a dataset of 3D “images”;
- Feed this dataset to some Deep
Generative Neural Network;

- Use the Trained NN to generate
BLOB-like outputs.




