GRB 200415A And the third class of gamma-ray bursts

11.4 Million years ago...

15 Million light-years from the Sun

SUN

NGC 253

11.4 Million years ago...

~2 Million years ago...

Homo habilis populates the planets when the photons emitted by the magnetar are about 2 million light years away...

$\sim 0.6 Mpc away$

15 Million light-years from the Sun

M31

1783...

Caroline Hershel discovered Sculptor galaxy

Sculptor Galaxy

...aka NGC 235

75,000 ly

45.000

Solutionius Arm Solutionius Arm For akpe Arm

330

240°

US US

Norma,

15,000 ly

Sun

Orion Spur

S

300°

270°

15 April 2020...

15 April 2020...

Konus

10

I. Something about Magnetars 2. GRB 200415A GeV detection 3. Extragalactic magnetar giant flares population

I. Something about Magnetars 2. GRB 200415A GeV detection

3. Extragalactic magnetar giant flares population

From SGRs to magnetars

Historically, magnetars first appeared in astronomy under the names **soft gamma repeaters**.

First published report in 1979: repeated bursts were seen by hard X-ray/soft gamma-ray instruments

Thompson & Duncan (1995, 1996):

SGR phenomena are nicely explained by spontaneous magnetic field decay serving as an energy source for the transient bursts and outbursts as well as for the persistent emission seen in these sources.

MAGNETARS

<u>Predicted magnetic field:</u>

Magnetic field $\mathbf{B} = 10^{14} - 10^{15}$ Gauss (x100 pulsars)

Known Magnetar population

- * 30 magnetars (10% of the young neutron-star population)
- * Close to the Galactic plane: **very young** (v~200 km/s)
- * High spin down timescale ~a few thousand years
- * Periods range: 0.3-9 seconds

Magnetars outbursts

* Bursts — Energy released ~ 10^{37} - 10^{40} ergs

* Giant Flares — Energy released ~ 1044 - 1046 ergs

March 5, 1979 enormous flare in Large Magellanic Cloud

Venera 12 space probe. (E.P. Mazets et al., 1979, Nature

A Population of Magnetar Giant Flares

1998 2004 GRB GRB 04 | 227 80827 16 Milky Way

A Population of MGFs

15 million light-years from Sun

1979

GRB

7

790305B

LMC

T90 = The time taken to accumulate 90% of the burst fluence starting at the 5% fluence level.

Gamma-ray bursts Short

T90 = The time taken to accumulate 90% of the burst fluence starting at the 5% fluence level.

Credit: NASA Goddard / CI Lab

2017: Short GRBs come from neutron star mergers, proven by LIGO, Virgo, Fermi, and INTEGRAL.

Credit: NASA/SkyWorks Digital

1998: Long GRBs come from a rare type of corecollapse supernova (Collapsars), proven by BeppoSAX and follow-up observations.

I. Something about Magnetars 2. GRB 200415A GeV detection 3. Extragalactic magnetar giant flares population

Inter Planetary Network

Since 1990: Third IPN (IPN3)

Today, the main spacecraft contributing:

- ***** Konus-WIND,
- * 2001 Mars Odyssey,
- *** INTEGRAL**
- * Swift
- * Fermi
- * BepiColombo.

By timing the arrival of a burst at several spacecraft, its precise location can be found.

Each pair of spacecraft, like SI and S2, gives an annulus of possible arrival directions whose center is defined by the vector joining the two spacecraft, and whose radius theta depends on the difference in the arrival times divided by the distance between the two spacecraft.

http://www.ssl.berkeley.edu/ipn3/index.html

The InterPlanetary Network (IPN) is a group of spacecraft equipped with gamma-ray burst (GRB) detectors

Localization of GRB 2000415A

NGC 253 Sculptor galaxy

IPN localization of GRB 2000415A

20 arcmin²

(3 sigma error)

Svinkin, D., et al. 2021, Published in Nature

GRB 2000415A spectral evolution

GRB 051103 - M81 GRB 200415A - Sculptor (NGC 253)

- * start with a sharp rise of an exceptionally bright, narrow (4 ms) initial pulse (green)
- * followed by an exponential decay
- * At inferred distances, the energy released ~ Galactic MGF (SGR 1806-20), but higher peak luminosity and > x5 more luminous
- * No astrophysical signal with these temporal, spectral properties and energetics have ever been reported
- * the most significant candidates for extragalactic magnetar giant flares

Fermi-GBM detection

O.j. Roberts, et al. 2021, Published in Nature

I. Something about Magnetars 2. GRB 200415A GeV detection 3. Extragalactic magnetar giant flares population

What did trigger the Fermi-LAT

Receiving the circular about the gamma-ray burst, automatically triggers the search in LAT data:

* Region of interest: (12x12)deg around Fermi-GMB localization * 10-500 2 after the trigger (time inside the LAT FoV)

Time since T ₀	Energy	R.A.	Dec	Prob.	Dist. _{NGC253}	σ_{68}
(s)	(MeV)	(°)	(°)		(°)	(°)
19.18	480	11.8	-25.0	0.990	0.3	1.0
130.21	110	359.2	-26.4	0.13	11.4	6.7
135.92	410	19.9	-25.7	0.13	7.3	2.3
157.96	131	5.9	-28.9	0.26	6.4	2.9
180.22	1300	11.7	-25.7	0.988	0.5	0.9
221.92	310	7.1	-26.8	0.50	4.5	1.5
262.17	350	16.3	-25.9	0.31	4.1	1.3
276.87	530	12.8	-27.2	0.73	2.1	1.0
284.05	1700	11.0	-25.0	0.999	0.9	0.4
357.32	350	17.5	-30.9	0.14	7.5	2.6
471.16	140	10.1	-21.5	0.75	4.2	2.8

Study the localization of the γ -ray signal observed by the LAT: likelihood analysis and Test Statistics

HO: LAT photons coming from background *** HI**: LAT photons coming from a source (at different positions, power-law spectrum)

$$TS = 2(log(L(H1)) - log(L(H0)))$$

TSmax=29: $RA = 11.13^{\circ}, dec. = -24.97^{\circ}$ (12000)

Detection significance:

$$TS_{distrib} = \frac{1}{2}\chi_2^2 \to 5.0\sigma$$

Study the localization of the γ -ray signal observed by the LAT: likelihood analysis and Test Statistics

HO: LAT photons coming from background *** HI**: LAT photons coming from a source (at different positions, power-law spectrum)

Source	Parameter	Value		
LAT source	Index (Γ)	-1.7 ± 0.3		
	Energy Flux	$(4.8 \pm 2.7) \times 10^{-9}$		
Typical LAT detected SGRB	Flux	$(4.1 \pm 2.2) \times 10^{-6}$		
	Liso	$(7.4 \pm 4.2) \times 10^{42}$		
	Eiso	$(3.6 \pm 2.1) \times 10^{45}$		
GalacticTemplate	Const	1 (fixed)		
IsotropicTemplate	Const	$1.0{\pm}0.8$		

How likely is the detected source to be associated to NGC 253?

- 4 sources in the 99% circular region from TS_{max}:
- *** ICI 576**
- *** ICI 578**
- *** ICI 582**
- *** NGC253**

Likelihood Ratio (LR) method:

ang. dist. between the γ -ray localization α and the counterpart candidate β $r_{lpha,eta}$ γ -ray location uncertainty r_{68} (at the 68% confidence level)

The probability that β lies at a distance $r_{\alpha,\beta}$ from α is distributed as a Rayleigh distribution:

$$r_{\alpha,\beta}e^{-r_{\alpha,\beta}^2/2}$$

The probability that β is a background source by chance close to the position α follows a linear distribution with $r_{\alpha,\beta}$

LAT Collab (MN). 2021, Published in Nature Astronomy

How likely is the detected source to be associated to NGC 253?

- 4 sources in the 99% circular region from TS_{max}: *** ICI 576**
- *** ICI 578**
- *** ICI 582**
- *** NGC253**

Likelihood Ratio (LR) method:

$$LR = \frac{e^{-r_{\alpha,\beta}^2/2}}{N(\leq m_{\beta})A}$$

$$LR = 2.1 (IC | 576),$$

$$LR = 2.9 (IC | 578)$$

$$LR = 0.3 (IC | 582)$$

$$LR = 60 (NGC 253)$$

LAT Collab (MN). 2021, Published in Nature Astronomy

How likely is the detected source to be associated to NGC 253?

- 4 sources in the 99% circular region from TS_{max}:
- *** ICI 576**
- *** ICI 578**
- *** ICI 582**
- *** NGC253**

Likelihood Ratio (LR) method:

	Analysis	p-value	
	Spatial Associat	tion with the Sculpton	n ga
	LR (Rayleigh)	2.9×10^{-3}	4
L	Rext (Rayleigh)	$1.7 imes 10^{-3}$	2
	LR (TS Map)	3.6×10^{-4}	6
I	LRext (TS Map)	3.2×10^{-4}	5

LAT Collab (MN). 2021, Published in Nature Astronomy

How often did we observed a triplet of photons above 100 MeV in a 500 second time window in the past 12 years?

GeV signal delay

Only two other GRB (both short) detected by the LAT happened with such a big delay from the GBM trigger

GeV signal delay

The delay suggests that the prompt MeV emission and the GeV emission are not generated in the same region.

LAT Collab (MN). 2021, Published in Nature Astronomy

Proposed scenario

Proposed scenario:

GeV emission is associated with the collision between an ultra-relativistic outflow from the MGF and an external shell of swept-up material.

- * Huge energy release: ~ 10^{47} erg: creates a very hot plasma (trapped radiation and e+e- pairs).
- * The plasma accelerates under radiation pressure: "transparent" at $R > 10^8$ cm.

* Radiation escapes: spectrum spike (peaked at MeV)

* Cloud of particles: outward flow bulk Lorentz factor $\Gamma_{ej} \approx 100$; kinetic energy of $\sim 3 \times 10^{46}$ erg.

The delay suggests that the prompt MeV emission and the GeV emission are not generated in the same region.

LAT Collab (MN). 2021, Published in Nature Astronomy

Proposed scenario

Proposed scenario:

- * During magnetar quiescent state a continual wind sweeps up interstellar gas : creates a shell at a distance $R_{\rm bs} \approx 8 \times 10^{15}$ cm
- * MGF outflows collides with the bow-shock shell
- * propagates inside the bow-shock: electrons are accelerated to relativistic energies and
- * emit synchrotron radiation up to GeV energies in shock-generated magnetic fields: peak emission duration $Rbs=2\Gamma_{sh}^2c \sim 400s$ bulk Lorentz factor of the forward shock $\Gamma^2_{sh} = 20$

The delay suggests that the prompt MeV emission and the GeV emission are not generated in the same region.

I. Something about Magnetars 2. GRB 200415A GeV detection 3. Extragalactic magnetar giant flares population

A Population of MGFs

Extragalactic MGFs and GRB

Known nearby MGF sample:

GRB 790305B **GRB 980827** GRB 041227

Only two extragalactic MGF candidates in literature:

GRB 051103 **GRB 070201**

Set upper bound: SGRB to have MGF origin < 8%*

* These studies and tehir conclu- sions generally assumed that the brightest MGFs could be detectable to tens of Mpc.

HIGH INTRINSIC RATE!

Extragalactic counterparts observed as GRBs

→ SGRB

Set lower bound: SGRB to have MGF origin > 1%*

Extragalactic MGFs and GRB

How to understand that MGFs are progenitors some SGRB?

PROBLEM:

Loss of the smoking gun signature

We carried out a study based on spatial information: SGRBs with MGF origin have to be consistent with local* known galaxies

* within 50 Mpc

Galaxies sample

* Position ---> (RA, DEC, d) Info for each galaxy:

- * Star formation rate (SFR)
- * 0.5-200 Mpc

zOMGS = GALEX (UV) + WISE (IR)z=0 Multiwavelength Galaxy Synthesis:

>100,000 galaxies

	PGC2789 NGC0253	PGC2758 NGC0247	PGC1851 NGC0134	PGC800 NGC0045	PGC701 NGC0024	PGC5548 NGC0813	PGC3238 NGC0300	PGC7304B NGC7795	POCETOCS NGC71ENCE	PCC13505
5 = -8	,	b = -83	b = -42	680 t	80	6 = -80	b = -79	6 =77	.e = -ai	3 = -50
	PGC1014 NGC0065	P00143 U004444	PGC5896 NGC0525	PGC71775 PGC071775	PGC8057 NGC0108	PGC71001 NGC7582	PGC71948 PGC071948	PGC10488 NGC1097	PGCBT045 VCCT080	PCC12288 BCC13H3
						1.	1	Ð.	1	· ALS.
67	5	673	673	6 E	68	6 - 65	-664	6 64	A 14 - 46	1. u. A.
	PGC70304 NGC7468	PGC80994 NGC7410	PGC70096 NGC7424	PGC70094 PGC070094	PGC71047 NGC7606	PGC3844 UGC00668	PGC11819 NGC1232	PGC12209 NGC1291	PGC16779	PCC65a00
								1.0		
60		b = -62	b62	6 61 6	61	b'= -60	b = -57	6 67	6 = -35	3 35
	PGC4948 NGC0488	PGC12651 NGC1316	PGC12923 NGC1340	PGC18412 NGC1300	PGC13069 NGC1350	PGC88518 PCC068518	PGC13179- NGC1365	PGC12838 NGC1332	PGC62626 NGCE744	PGC0063
							0			all a
6	a del	6 = -56	b = -55	6 55	85	6	6 54	654	o = -56	s = - 25
	PGC11139 POC011139	PGC13418 N6C1399	PGC13433 NGC1404	PGC15434 NGC1398	PGC10266 MESSIER077	PGC10208 NGC1055	PGC13727 NGC1448	PCC13566 NGC1438	Poptost	PECEBOOI

* Angular extent (if > any resolution = ellipse)

+ supplement <10 Mpc with the Local Volume Galaxy (LVG) Catalog + SFR, ang. ext. from Census of the Local Universe (CLU) Catalog

GRB sample

GRB selection and info:

★ SHORT! (**T90** < 2 s) * Bolomertic fluence at Earth(I keV - 10 MeV) -> S * Well localized (from all available info, IPN^*)

* this work required additional 100 IPN locations: provided in the paper

CGRO-BATSE + Konus-WIND + Swift-BAT + Fermi-GBM

250 SGRB

+ additional info from the IPN

GRB probability distribution function at the ith sky position:

probability that a given position is to produce a MGF with a particular fluence at Earth

P;GRB

PGRB 75 ° 60 ° 45 ° 30 ° 15° 330° 300° 270° 240° 0 ° -15 ° -30

-60 °

-45 °

PMGF 75 ° 60 ° 45 ° 30 ° 15° 330° 300° 270° 240° 210° 0 ° -15 ° -30 -45 ° -60 °

-75 °

PMGF X PGRB

Discovery of local extragalactic population of GRBs

Discovery of local extragalactic population of GRBs

Four local GRBs, hosts, odds of chance alinement

Key parameters comparison

Two main characteristics distinguish SGRB candidate to have a MGF origin from the rest SGRBs:

- * Very short rise time (a few milli-seconds: far way shorter than cosmological GRBs) * Intrinsic energetic (orders of magnitude fainter than cosmological GRBs)

MGFs Intrinsic Energetic

Simulate a large number of extragalactic MGFs:

- * E_{iso} from PDFs over a range of α values
- * Each assigned to specific host galaxy (weighted by its SFR and distance)

Detected events: those where the sampled E_{iso} and distance produce a flux greater than our detection threshold.

MGFs Intrinsic Rate

Convolution of

* 2D PDF for alpha VS number of detected MGFs (6*) * Intrinsic rate expected for a given alpha and number of detected MGFs

$$R_{MGF} = 3.8^{+4.0}_{-3.1} \times 10^5 \text{ Gpc}^{-3} \text{yr}^{-1}$$

* the first detected MGF used a different IPN calibration, so we discarded it

MGF Intrinsic Rate

Event

Magnetar Giant Flares

Neutron Star Mergers (short GRBs)

Collapsars (long GRBs)

Type la Supernovae

Core-Collapse Supernovae

Why have we not identified MGFs more and to greater* distances?

*they were thought to be detectable to tens of Mpc

Local Rates (Gpc ⁻³ yr ⁻¹)	Identified events
380,000	7
320 ^a	~ 2000
~100 ^b	~10,000
30,100 ^d	~15,000 ^e
~70,000 ^d	~ 8000 ^e

a – LSC 2020 arXiv:2010.14527 b – D. Siegel, et al. 2019 Nature 569, 241 c - S. Prajs, et al. 2017 MNRAS 464, 3 d – W. Li, et al. 2011 MNRAS 412, 3 e - https://sne.space/

Summary of MGF sample today

As appeared from GRBs 200415A, 051103 and 070222:

SPECTRALLY HARD and HIGHER PEAK ENERGY!

GRB detector are triggered by photon counts: Detectable MGF number is reduced by $\sim x5$ (x > 100 in volume)

Comptonized Spectrum:

$$\frac{dN}{dE} = \left(\frac{E}{100 \ keV}\right)^{\alpha} e^{-(\alpha+2)\frac{E}{E_{peak}}}$$
$$\alpha^{SGRB} \approx -0.4 \qquad \alpha^{MGF} \approx 0$$
$$E_{peak}^{SGRB} \approx 0.6MeV \qquad E_{peak}^{MGF} \approx 1.5MeV$$

0.0030 0.0025 0.0020 $\Phi(E)$ Ш 0.0015 0.0010 0.0005 0.0000

A Population of MGFs

Summary

* 4 short GRBs occurred within ~5 Mpc which are the closest events by an order of magnitude in distance * They are inconsistent with a collapsar or neutron star merger origin (lack of SN or GW counterparts) * Their prompt emission is inconsistent with the properties of cosmological GRBs * They originate from star-forming galaxies, including those with metallicity that prevents collapsars from occurring * 4 out of 250 SGRBs have MGFs origin: ~2% of detected short GRBs * Intrinsic energetics distribution of MGFs: a power-law with index $\alpha = 1.7 \pm 0.4$ * The volumetric rates are $R_{MGF} \sim 380000 \text{ Gpc}^{-3}\text{yr}^{-1}$. * The rates and host galaxies of these events favor CCSN as the dominant formation channel for magnetars, requiring at least 0.5% of CCSN to produce magnetars. * Our results suggest that some magnetars produce multiple MGFs: this would be the first known source of repeating GRBs. * GRB 070222 suggests MGFs can have multiple pulses. * MGFs may not be detectable to tens of Mpc with existing instruments due to their spectral hardness.

* The LAT detection is the first GeV detected emission form a MGFs

opening new windows for possible explanations.

* LAT detected delay suggests the prompt MeV emission and GeV emission are generated in different regions

GRB 200415A And the third class of gamma-ray bursts

HANK YUU!

References

I. Something about Magnetars

Magnetars — Victoria M. Kaspi, Andrei Beloborodov Ann.Rev.Astron.Astrophys. 55 (2017) 261-301 • DOI: 10.1146/annurev-astro-081915-023329

2. GRB 200415A GeV detection

Rapid spectral variability of a giant flare from a magnetar in NGC 253— O.J. Roberts et al. (GBM team) Nature 589 (2021) 7841, 207-210 • DOI: 10.1038/s41586-020-03077-8

Bright twin γ-ray flares in two nearby galaxies as giant magnetar flares— D. Svinkin et al. (IPN team) Nature 589 (2021) 7841, 207-210 • DOI: 10.1038/s41586-020-03077-8

High-energy emission from a magnetar giant flare in the Sculptor galaxy— M.Ajello et al. +MN (LAT team) Nature Astronomy (2021) • DOI: 10.1038/s41550-020-01287-8

3. Extragalactic magnetar giant flares population

Identification of a local sample of gamma-ray bursts consistent with a magnetar giant flare origin — E. Burns et al. +MN Ap. J. Letters 907(2):L28, jan 2021 • DOI: 10.3847/2041-8213/abd8c8

in NGC 253— O.J. Roberts et al. (GBM team)

BACKUP

Sodium lodide detectors

Bisminth germinate detector

Gamma-Ray Monitor (GBM) Nal and BGO scintillators

Large Area Telescope (LAT) Pair-production instrument ACD

LAT

- * Energy range: 20 MeV to > 300 GeV
- * Field of view: 2.4 steradians
- * Single photon angular resolution: <1° at 1 GeV

GBM

- * Energy range: 8 keV to 40 MeV
- * Field of view: 9.5 steradians
- * Gamma-ray burst localization: typical 3°

How often did we observed a triplet of photons above 100 MeV in a 500 second time window in the past 12 years?

Summary of MGF sample today

	Known			Extragalactic			
MGF Event	790305B	980827	041227	200415A	070222	051103	070201
Origin							
False Alarm Rate	0	0	0	$4.9 imes 10^{-6}$	$7.8 imes 10^{-6}$	1.5×10^{-5}	1.2×10^{-4}
BNS Excl. [Mpc]					6.7	5.2	3.5
Galaxy Properties							
Catalog Name	LMC	MW	MW	NGC253	M83	M82	M31
Distance [Mpc]	0.054	0.0125	0.0087	3.5	4.5	3.7	0.78
${ m SFR}~[M_{\odot}/yr]$	0.56	1.65	1.65	4.9	4.2	7.1	0.4
GRB Properties							
Duration [s]	< 0.25	<1.0	< 0.2	0.100	0.038	0.138	0.010
Rise Time [ms]	~ 2	~ 4	~ 1	2	4	2	24
$L_{\rm iso}^{Max} \ [10^{46} \ {\rm erg/s}]$	0.65	2.3	35	140	40	180	12
$E_{\rm iso} \ [10^{45} \ {\rm erg}]$	0.7	0.43	23	13	6.2	53	1.6
Index			-0.7	0.0	-1.0	-0.2	-0.6
$E_{\rm peak} \ [{\rm keV}]$	500	1200	850	1080	1290	2150	280

Why have we not identified MGFs to greater* distances?

*they were thought to be detectable to tens of Mpc)

18th century... Nicolas Louis de Lacaille introduces Sculptor Contellation

