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Wakefields
• Gauss’ law     =>    A charged particle is always connected with its 

field lines. You can distort the field lines by perturbing the 
particle motion and by wall boundaries, but you can’t get rid of 
them.  Field lines are indestructible.

• It follows that a beam necessarily carries with it a lot of field 
lines, bouncing back and forth in the vacuum chamber. 

• It then follows that the vacuum chamber is FAR FROM in vacuum. 
It is filled with E&M fields.  

• These E&M field lines  are referred to as wakefields. Vacuum 
chamber is filled with strong wakefields, literally like a microwave 
oven.



Beam-structure interaction
• Accelerator designers are fortunate to have the following very special case that works in 

their great favor. Theorem: when the beam is relativistic and when the vacuum 
chamber is longitudinally smooth perfectly-conducting pipe, then there is no wake 
force. 

• In this very special case, there are still E&M field lines – called “pancake fields” because 
they shape like a pancake. Pancake fields are the strongest beam-generated E&M fields 
in a vacuum chamber. However, due to a magical exact cancellation between electric 
force and magnetic force, there is no net wake force in this special case!

• All accelerators are based on this theorem. That is why, to zero-th order, all accelerators 
are perfectly conducting smooth pipes!

• Wakefields are generated by beam-structure interaction. Whenever there is a 
discontinuity in the vacuum chamber (even as small as 1 mm!), or when the pipe is 
slightly resistive, wakefields are generated, and that is still a serious matter. 

• This theorem helps greatly. But we need more help.

Smooth pipe                         Discontinuity

 No wake force                  Wakefileds



Instabilities

• Most of these wakefields, fortunately, are harmless. The 
relativistic beam will typically penetrate them only with minor 
perturbations even with high beam intensities.

• However if the wakefields systematically perturb the beam 
motion, then the minor perturbations can accumulate up to a 
large perturbation, causing the beam to become unstable. 
Only the systematic part of the wakefields causes instability.

• Note that we are speaking of a relativistic beam. For a 
nonrelativistic beam, much of our discussions will not apply.



Panofsky-Wenzel theorem

• Beam-structure interaction is a difficult calculational problem.
Applying PIC codes is reasonable for small devices such as 
electron guns and klystrons, but becomes impractical for large 
accelerators.

• So, what can we do for large accelerators?  The answer is we 
must find a clever way to simplify, and there is a very clever way!  
We do not need to do extensive 3-D PIC simulations element 
by element in order to study instability effects.

• For high energy accelerators, this is achieved by making two 
approximations. These two approximations, together with the 
Panofsky-Wenzel theorem that follows from them, lay the 
foundation for the concepts of ``wake function'' and 
``impedance'‘ of the modern accelerators.



First approximation:  the Rigid-beam approximation
• At high energies, beam motion is little affected during the passage of a structure.

• One can calculate the wakefields assuming the beam shape is rigid and its 
motion is ultrarelativistic with v=c in a straight line.

• In fact, we only need to calculate the wakefields generated by a rigid cos mθ ring 
beam (m=0 monopole (net charge), m=1 dipole, etc.)

• Wakefield of a general beam can be obtained by superposition of wakefields due 
to the ring beams with different m's and different ring radii.



Second approximation: the Impulse Approximation

First note that we don't need to know the instantaneous electric field      or 
magnetic field       separately. We need only to know the force f = e(E + v x B).

Second, for high energies, we don't even need the instantaneous f. We only 
need the integrated impulse

where the integration over t is performed along the unperturbed straightline 
trajectory of the test charge e, holding D fixed. 



The instantaneous wakefields are complicated, but the integrated impulse           is 
much simpler and it is          that we need!

The quantity          is sometimes called the ``wake potential''.

Note that although the beam is considered to be rigid during the passage, the 
impulse will affect the subsequent beam motion after the passage.

Note also that, by integrating over t, only the systematic part of wake force is 
considered. All rapid oscillating terms are integrated to zero.

Reasoning along this line turns out to be quite fruitful. In the following, we will

- derive the Panofsky-Wenzel theorem
- consider various applications

The two approximations and the  Panofsky-Wenzel theorem are the basis of all beam 
instability analyses in high energy accelerators.
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Derivation of Panofsky-Wenzel theorem

Rigid-beam approximation!



We want to calculate the net kick received by a test charge e with transverse position 
(x,y) and longitudinal position D relative to the moving beam. Both beam and test 
charfe move with v = βc in z-direction. Impulse approximation:

With f given in (1.7) and fields satisfying (1.6), one then proceeds to calculate the 
quantity                     .  It is then found that

Panofsky-Wenzel theorem!

One thing amazing: we have not yet assumed anything of the beam, 
or the vacuum chamber boundary. They are arbitrary. We only made 
two approximations, and the Panofsky-Wenzel theorem followed.

Note also: the original P-W paper (1956) reads completely 
different/obscure.

Impulse
Approximation!



Discussion 1

Decompose the P-W theorem into longitudinal and transverse components =>

Discussion 2

Specialize to ultrarelativistic case β=1   (1.17)



And when β=1, (1.17) gives

Combining two equations then gives

It is clear that P-W theorem imposes very strong conditions on the wake 
potential.

Application 1:  Cartesian coordinates

Apply to Cartesian coordinates, (1.15) reads



Application 2:  Cylindrical coordinates

A more common application is for a cylindrically symmetric pipe.

(1.15)   

(1.16)   

(1.17)   



These P-W equations are surprisingly simple. They do not contain any beam source 
terms. The beam can have any shape or distribution. Neither do they depend on the 
boundary conditions. The boundary can be perfectly conducting or resistive metal, 
or dielectric, or even a gradually fading plasma surface. The boundary also does not 
have to consist of a single piece. 

The only inputs needed for the Panofsky-Wenzel theorem are the Maxwell 
equations in free space and the two approximations. 

Solving the P-W equations in cylindrical coordinates for the case driven by an 
ultrarelativistic cos mθ ring beam  

Here Wm(D) is the called wake function. Fourier transform of Wm(D)
is the transverse impedance. Fourier transform of W’ m(D) is the 
longitudinal impedance.  



The 3-D dependence of wake potential ∆p on (r, θ, D)  no longer requires a 
3-D PIC calculation. Its r- and θ-dependences are explicitly solved, thanks to 
Panofsky-Wenzel theorem.

This drastic simplification is applicable only to ∆p, and is not application to 
E, B, or f.

For discussions beyond this point, see textbooks.



Application 3:   Cylindrical pipe 
with a central conductor

Presence of a central conductor profoundly changes the wakefields.
In particular, another set of wake functions now emerges which was 
forbidden because they diverge at r=0.

Special case when central conductor is a smooth wire of radius a

One must be careful when measuring impedances using the “wire 
method” – a questionable technique to measure impedances!



Application 4:    Planar wake theorem

For ultimate linear collider :

Higher RF frequency for higher gradient
Smaller accelerating structures
Stronger wakefields
Need a way to desensitize the wakefields
Rectangular structures instead of cylindrical ones (Rosenzweig)

Also, small structures are to be made by laser cutting.
Rectangular structures allows easer fabrication.



Consider a 2-D arrangement with planar boundaries and rod beams.

Following similar derivation as P-W theorem, one obtains an interesting result:

Planar wake theorem



It follows from this Planar Wake theorem that

(1)  If the 2-D boundaries have an up-down symmetry, then there will be no 
transverse wake!

(2) If one side of the 2-D boundaries is a perfect plane, there will be no longitudinal 
wake!

(3) Unfortunately there is no 2-D design that eliminates both transverse and 
longitudinal wakes.
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