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Motivation

• π,K are Goldstone Bosons of QCD: 
Threshold parameters test Chiral Symmetry Breaking
In particular, the predictions of Chiral Perturbation Theory,
which is the low-energy Effective Theory of QCD

• π,K appear as final products of almost all hadronic strange processes:
B,D, decays, CP violation studies…

• Main or relevant source for PDG parameters of:
κ/K0*(700), K0*(1430),K1∗(892),K1∗(1410),K2∗(1410),K3∗(1780)

• κ/K0*(700):

o existence and parameters controversial for 6 decades.
Still “Needs Confirmation” on PDG

o Needed to complete SU(3) classification of lightest scalars

o Candidate for non-ordinary meson.



• Large model-dependences: 
naïve models often used for parameterizations and resonance poles

Model independent constraints, 
precise threshold parameters and pole determinations.

Enhanced precision

Problems

Dispersion Relations (This talk)

• Data: extracted from KN→πKN’, assuming one pion exchange.
Large systematic uncertainties and inconsistencies.
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Most reliable sets:
Estabrooks et al. 78 (SLAC)
Aston et al.88 (SLAC-LASS)

I=1/2 and 3/2 combination
MANY DATA IN CONFLICT

No clear “peak” or phase movement
of κ/𝐾𝐾0∗(800) resonance
Definitely NO BREIT-WIGNER shape

Data on πK scattering: S-channel

No data near threshold.
Models need dangerous extrapolations.
Dispersion relations →sum-rules

Compare to nice 
BW shape for

K1∗(892)
(P-wave)



πK scattering length: S-wave lattice dispersive tension

• Threshold parameters relevant to test ChPT (NNLO at present).
• Present tension between lattice and dispersive results



The “kappa” controversy… very very briefly

• Dalitz 1965: “Quite apart from the model discussed here,…such K* 
states are expected to exist simply on the basis of SU(3)”Procs. Oxford Int. Conf. on Elementary Particles 1965

• 1967 
attitude

• Removed from Review of Particle Physics in 1976 (with the σ)

• Many claims at different masses, narrow, wide… claims of absence. Confusion

• Back to RPP in 2004 as “controversial” K0
∗(800). Omitted from summary tables

Strong support for κ/K0*(800) from chiral theories and experimental decays of heavier mesons, but rigorous
model-independent extractions absent. Often inadequate Breit-Wigner formalisms



The“kappa” controversy very very briefly

Omittted from the 2018PDG summary table since, “needs confirmation”
Since the 70’s 90’s, all descriptions of data respecting unitarity and chiral 
symmetry find a pole at M=650-770 MeV and Γ~550 MeV or larger.

Best determination came from a SOLUTION (they did NOT use DATA on kappa region)

of a Roy-Steiner dispersive formalism, consistent with UChPT Decotes Genon et al 2006

2017PDG:

K0
∗(800) dominated by such a SOLUTION
M-i Γ/2=(682±29)-i(273±i12) MeV

We were encouraged by PDG to confirm it with a dispersive DATA analysis (this talk)

(630-730)-i(260-340) MeV
name changed to K0

∗(700)

PDG2018:                             

PDG2020:
K0

∗(700) Makes it to the summary tables. 
Still “Needs Confirmation”



MOTIVATION: The light scalar controversy. 
Scalar SU(3) multiplets identification controversial

Too many or too few resonances for decades
But there is an emerging picture

f0(980)

κ/K0*(700)

a0(980)

A Light scalar nonet:

Singlet

Non-strange heavier!!
Inverted hierarchy problem

For quark-antiquark 

f0(500) and f0(980) are 
really octet/singlet mixtures

f0

K0*(1430)

a0(1450)

+ Another
heavier scalar nonet:

f0 singlet f0

+ glueball ?

Enough f0 states observed: f0(1370), f0(1500), f0(1700). 
Picture complicated by mixture between them (lots of works here)

Note strange resonances “count” how many nonets  exist.

Only the light κ(700) or K0*(700)  “Needs Confirmation” @ PDG2020



Resonances as poles

The universal features of resonances are their 
pole positions and residues *

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≈M-i Γ/2

*in the Riemann sheet obtained from an analytic continuation through the physical cut

The Breit-Wigner shape is just an approximation for narrow and isolated resonances 

s-plane
Im s

Re s

Amplitudes satisfy 𝑓𝑓 𝑠𝑠∗ = 𝑓𝑓∗ 𝑠𝑠 . Thus, poles appear in conjugated pairs in the 2nd Riemann sheet.



1st sheet

2nd sheet

When poles are isolated from other singularities and “narrow”=near the real axis,
the amplitude looks like usual BW

K1∗(892)



Why so much worries about low energy and CORRECT ANALYTIC STRUCTURE?
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Analyticity is expressed in the s-variable, not in Sqrt(s)

Important for
the 𝜅𝜅/𝐾𝐾0∗(700)
and threshold 
parameters

• Threshold behavior (chiral symmetry)

• Subthreshold behavior (chiral symmetry →Adler zeros)

• Other cuts (Left & circular)

𝜅𝜅/𝐾𝐾0∗(700)

Less important for other resonances…

• Avoid spurious singularities

For partial waves and different masses, additional circular cut 

Left cut from crossed  channel thresholds



1st sheet

2nd sheet

When poles are isolated from other singularities and “narrow”=near the real axis,
the amplitude looks like usual BW

K1
∗(892) κ/K0

∗(700)



Why use dispersion relations?    

CAUSALITY:  Amplitudes T(s,t) are ANALYTIC in 
complex s plane but for cuts for thresholds.
Crossing implies left cut from u-channel threshold

EXAMPLE: Fixed t dispersión relation: recall 𝑇𝑇 𝑠𝑠∗ = 𝑇𝑇∗ 𝑠𝑠
If T->0 fast enough at high s, curved part vanishes

Otherwise, determined up to 
a polynomial (subtractions)
Left cut usually a problem

Cauchy Theorem determines T(s,t) at ANY s, 
from an INTEGRAL on the contour



EXAMPLE: For partial waves. 

We now integrate t, which is like integrating in zs=cosθ:

If T->0 fast enough at high s, curved part vanishes
Otherwise, determined up to a polynomial (subtractions)
Left and circular cuts usually a problem.
Example with 3 subtractions:

Dispersion Relations are good for:

1) Calculating T(s,t) where there is not data

2) Constraining data analysis

3) ONLY MODEL INDEPENDENT extrapolation to complex s-plane
without extra assumptions



Our Dispersive/Analytic  Approach for πK and strange resonances

S-waves

D-waves

Even F-waves!!

FIRST STEP: 
Simple Unconstrained Fits (UFD) to πK and ππ→KK partial-wave Data  
Estimation of statistical and SYSTEMATIC errors



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 



Since interested in the resonance region, we use minimal number of subtractions

Defining the s↔u symmetric 
and anti-symmetric amplitudes
at t=0 

We need one subtraction for the symmetric amplitude

And none for the antisymmetric

Forward dispersion relations for K π scattering.

where Σ𝜋𝜋𝐾𝐾 = mπ
2+mK

2



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As πK checks: Small inconsistencies. 



(not a solution of dispersión relations,
but a constrained fit)

A.Rodas & JRP, PRD93,074025 (2016)

Forward Dispersion Relation
analysis of 

πK scattering DATA
up to 1.6 GeV

First observation:
Forward Dispersion relations

Not well satisfied by data
Particularly at high energies

So we use 
Forward Dispersion Relations 

as CONSTRAINTS on fits



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As πK checks: Small inconsistencies. 

• As constraints: 
πK consistent fits up to 1.6 GeV JRP, A.Rodas,Phys.Rev. D93 (2016)



How well Forward Dispersion Relations are satisfied by unconstrained fits

Define an averaged χ2 over these points, that we call d2

Every 22 MeV calculate the difference between both sides of the DR /uncertainty

d2 close to 1 means that the relation is well satisfied

d2>> 1 means the data set is inconsistent with the relation.

2 FDR’s Sum Rules 
threshold

Parameters of the 
unconstrained  data fits

To obtain CONSTRAINED FITS TO DATA (CFD) we minimize:

W roughly counts the number
of effective degrees of freedom 
(sometimes we add weight on certain energy regions)

This can be used to check DR



Consistency up to 1.6 GeV!!

Consistency up to 1.74 GeV!!



S-waves. The most interesting for the K0* resonances 

Largest changes from UFD to CFD

at higher energies

From Unconstrained (UFD) to Constrained Fits to data (CFD)



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As πK checks: Small inconsistencies. 

• As constraints: 
πK consistent fits up to 1.6 GeV JRP, A.Rodas,Phys.Rev. D93 (2016)

• Analytic methods to extract poles: reduced 
model dependence on strange resonances

JRP, A. Rodas. J. Ruiz de Elvira, Eur.Phys.J. C77 (2017)



Strange resonance poles from CFD: Using Padé sequences JRP, A.Rodas & J. Ruiz de Elvira. Eur. Phys. J. C (2017)

Almost model independent: Does not assume any particular functional form
(but local determination)

Based on previous works by P.Masjuan, J.J. Sanz Cillero, I. Caprini, J.Ruiz de ELvira



Strange resonance poles from CFD: Using Padé sequences JRP, A.Rodas & J. Ruiz de Elvira. Eur. Phys. J. C (2017)

The method can be used for inelastic resonances too. Provides resonance parameters
WITHOUT ASSUMING SPECIFIC FUNCTIONAL FORM

In 2021, the PDG willstart giving pole positions for some of these besides BW parameters



Kappa pole from CFD

1) Extracted from our conformal CFD parameterization A.Rodas & JRP, PRD93,074025 (2016)

Fantastic analyticity properties, 
but not model independent

(680±15)-i(334±7.5) MeV

2) Using Padé Sequences… 
JRP, A. Rodas  & J. Ruiz de Elvira. Eur. Phys. J. C (2017) 77:91 (670±18)-i(295± 28) MeV

Compare to PDG2017:                             
(682±29)-i(273±12) MeV



The resonance is NO LONGER the κ nor the K0∗(800)

But Still “Needs 
Confirmation” !

Plenty of room 
for improvement
on parameters

Best analysis so far:
Roy-Steiner 

dispersion relations

Our
Pade sequences



Kappa pole analytic determinations from constrained fits

1) Extracted from our conformal CFD parameterization A.Rodas & JRP, PRD93,074025 (2016)

Fantastic analyticity properties, 
but not model independent

(680±15)-i(334±7.5) MeV

2) Using Padé Sequences… 
JRP, A.Rodas & J. Ruiz de Elvira. Eur. Phys. J. C (2017) 77:91 (670±18)-i(295± 28) MeV

Compare to PDG2017:                             
(682±29)-i(273±12) MeV

New PDG2018:                             
(630-730)-i(260-340) MeV

And name changed
K0

∗(700)
Still “Needs Confirmation”



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As πK checks: Small inconsistencies. 

• As constraints: 
πK consistent fits up to 1.6 GeV JRP, A.Rodas,Phys.Rev. D93 (2016)

• Padé Sequences to extract poles: reduced 
model dependence on strange resonances

JRP, A. Rodas. J. Ruiz de Elvira, Eur.Phys.J. C77 (2017)

Partial-wave πK Dispersion Relations
Need ππ→KK to rewrite left cut. Range optimized.



Partial Wave πK→πK  and ππ→KK Dispersion Relations (Roy-Steiner eqs.)

To get a resonance pole we need 
PARTIAL-WAVE dispersion relations.

1) Integrate “t” for fixed-t dispersion relations. 
Fine for the real axis (1.1 GeV)
Very mild dependence on ππ→KK
but bad to reach the pole.
Were used to obtain solutions by the Paris Group
We will only used them as constraints on data

Their applicability is limited 
-by the double spectral regions 
-by the Lehmann ellipses 
(way too technical. See our apendices)

Two possibilities in the literature:



πK→πK  and ππ→KK Hyperbolic Dispersion Relations (HDR)
2) Integrate along (s-a)(u-a)=b hyperbolae in the  Mandelstam plane

We tuned a=-13𝑚𝑚𝜋𝜋
2 to maximize applicability for ππ→KK up to 1.47 GeV. 

Applicability range slightly smaller in real axis
for πK, but covers the kappa pole if a chosen 
appropriately

We will use them as constraints and to get the 
pole.
a=-10𝑚𝑚𝜋𝜋

2 chosen to include also error bars 
inside applicability region



JRP, A. Rodas PRD 2018 

gI
J =ππ → KK partial waves. We study (I,J)=(0,0),(1,1),(0,2)

fI
J = Kπ → Kπ partial waves. Taken from previous dispersive study

Δ(t) depend on higher waves
or on Kπ→Kπ.

Solve in descending J order
We have used models for higher waves, but give very small contributions

𝐺𝐺𝐽𝐽,𝐽𝐽𝐽
𝐼𝐼 (t,t’) =integral kernels, depend on a parameter

Lowest # of subtractions. Odd pw decouple from even pw. 

33

Integrals from
2π threshold !

πK→πK  and ππ→KK Hyperbolic Dispersion Relations (HDR)



ππ→KK Hyperbolic Dispersion Relations (HDR)

For unphysical region below KK threshold, we used Omnés function

This is the form of our HDR: Roy-Steiner+Omnés formalism

We can now check how well these HDR are satisfied

34



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

• Analytic methods to extract poles: reduced 
model dependence on strange resonances

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As constraints: 
πK consistent fits up to 1.6 GeV

Partial-wave πK Dispersion Relations
Need ππ→KK to rewrite left cut. Range optimized.

• As πK checks: Small inconsistencies. 

• As ππ→KK checks: Small inconsistencies. 

• As constraints: 
ππ→KK consistent fits up to 1.5 GeV

JRP, A.Rodas,Phys.Rev. D93 (2016)

JRP, A. Rodas. J. Ruiz de Elvira, Eur.Phys.J. C77 (2017)

JRP, A.Rodas, Eur.Phys.J. C78 (2018)



I=1,J=1, UFD vs.CFD

UFD already good CFD even better

Requires almost imperceptible change from UFD to CFD

36

ππ→KK Hiperbolic Dispersion Relations JRP, A.Rodas, Eur.Phys.J. C78 (2018)



I=2,J=2, UFD vs. CFD

UFD room 
for improvement

Very small change from UFD to CFD. Only significant at threshold and high energies 

CFD better

But still tension at threshold

Other parameterizations (BW…), 
worse.

37

ππ→KK Hiperbolic Dispersion Relations JRP, A.Rodas, Eur.Phys.J. C78 (2018)



I=0,J=0, UFD vs. CFD
We use I=0,J=2 CFD as input.

38

Remarkable improvement from UFD to CFD, except at threshold. 
Both data sets equally acceptable now.

Two possible sets of data
ππ→KK Hiperbolic Dispersion Relations JRP, A.Rodas, Eur.Phys.J. C78 (2018)



I=0,J=0, CFD

1-σ differences between
UFD and CFD phase

Some 2-σ level differences between UFDB and CFDB between 1.05 and 1.45 GeV
CFDC consistent within 1-σ band of UFDC

2-σ differences between
UFDB and CFDB phase

39

ππ→KK Hiperbolic Dispersion Relations JRP, A.Rodas, Eur.Phys.J. C78 (2018)



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

• Analytic methods to extract poles: reduced 
model dependence on strange resonances

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As constraints: 
πK consistent fits up to 1.6 GeV

Partial-wave πK Dispersion Relations
Need ππ→KK to rewrite left cut. Range optimized.

• From fixed-t DR: 
ππ→KK influence small.
κ/K0

∗(700) out of reach

• From Hyperbolic DR: 
ππ→KK influence important.

• As πK checks: Small inconsistencies. 

• As ππ→KK checks: Small inconsistencies. 

• As constraints: 
ππ→KK consistent fits up to 1.5 GeV

• As πK Checks: Large inconsistencies. 

JRP, A.Rodas,Phys.Rev. D93 (2016)

JRP, A. Rodas. J. Ruiz de Elvira, Eur.Phys.J. C77 (2017)

JRP, A.Rodas, Eur.Phys.J. C78 (2018)

JRP, A.Rodas, arXiv:2010.1122. To appear in Physics Reports 



gI
J =ππ → KK partial waves. We study (I,J)=(0,0),(1,1),(0,2)

fI
J = Kπ → Kπ partial waves. We study (I,J)= (1/2,0),(3/2,0),(1/2,1),(3/2,1)

41

πK→πK  Hyperbolic Dispersion Relations (HDR)

I show you here the Eqs. for Kπ

For the antisymmetric ones we study both one- and no-subtractions Coupled to
ππ → KK



πK Hiperbolic Dispersion Relations (I,J)=(3/2,0),(1/2,1),(3/2,1)

LARGE inconsistencies IF UNCONSTRAINED

Unconstrained Fit to Data



πK Hiperbolic Dispersion Relations I=1/2, J=0

LARGE inconsistencies with HDR Roy-Steiner from unconstrained fits (UFD)
One or no subtraction for F- lie on opposite sides of input

Fixed-t Roy-Steiner is fair 
but kappa pole outside their 
applicability region

The most relevant wave for the kappa resonance.

We have chosen the hyperbolae family so that the kappa pole 
and its uncertainties lie within their applicability region



WARNING ABOUT THE PRECISION OF UNCONSTRAINED FITS

Before imposing Roy Eqs. incompatible results with different # of subtractions !!
This is part ly due to left/circular cuts.
(Crossed Channel)

You can imagine what precision you get if you use simple models only of πK, 
without left cut or without dispersion relations…

Nice-looking fits are NOT 
enough to get an stable 
and precise continuation 
to the complex plane

Same UFD input!!
Different poles!



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

• Analytic methods to extract poles: reduced 
model dependence on strange resonances

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As constraints: 
πK consistent fits up to 1.6 GeV

Partial-wave πK Dispersion Relations
Need ππ→KK to rewrite left cut. Range optimized.

• From fixed-t DR: 
ππ→KK influence small.
κ/K0

∗(700) out of reach

• From Hyperbolic DR: 
ππ→KK influence important.

• As πK checks: Small inconsistencies. 

• As ππ→KK checks: Small inconsistencies. 

• As constraints: 
ππ→KK consistent fits up to 1.5 GeV

• ALL DR TOGETHER as Constraints: 
πK consistent fits up to 1.1 GeV

• As πK Checks: Large inconsistencies. 

JRP, A.Rodas,Phys.Rev. D93 (2016)

JRP, A. Rodas. J. Ruiz de Elvira, Eur.Phys.J. C77 (2017)

JRP, A.Rodas, Eur.Phys.J. C78 (2018)

JRP, A.Rodas, 
arXiv:2010.1122. 

To appear in Physics 
Reports



Recall previous plot

Our Constrained 
parameterization now 
yields consistent output 
for all Dispersion 
Relations

πK Hiperbolic Dispersion Relations I=1/2, J=0

We provide a constrained fit to data (CFD) satisfying 16 Dispersion relations
(FDRs, fixed-t, HDR, different # subtractions)
Fairly simple and ready to use parameterizations

JRP, A.Rodas, arXiv:2010.1122. To appear in Physics Reports



πK Hiperbolic Dispersion Relations (I,J)=(3/2,0),(1/2,1),(3/2,1)

LARGE inconsistencies FOR THE OTHER WAVES IF UNCONSTRAINED

Unconstrained Fit to Data
Made consistent within uncertainties for the CFD

Constrained Fit to Data



πK CFD vs. UFD
Constrained parameterizations suffer minor changes but still describe 
πK data fairly well. Here we compare the unconstrained fits (UFD) versus the 
constrained ones (CFD)

JRP, A.Rodas, arXiv:2010.1122. To appear in Physics Reports

P-wave consistent 
with scattering data



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

• Padé sequences to extract poles from local 
information: reduced model dependence on 
strange resonances

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As constraints: 
πK consistent fits up to 1.6 GeV

Partial-wave πK Dispersion Relations
(PWDR)

Need ππ→KK to rewrite left cut. Range optimized.

• From fixed-t DR: 
ππ→KK influence small.
κ/K0

∗(700) pole out of reach

• From Hyperbolic DR: 
ππ→KK influence important.
As πK Checks: 
Large inconsistencies

• As πK checks: Small inconsistencies. 

• As ππ→KK checks: Small inconsistencies. 
• As constraints: 

ππ→KK consistent fits 
from KK threshold to 1.5 GeV

• ALL DR TOGETHER as Constraints: 
πK consistent fits up to 1.1 GeV for PWDR,
up to 1.6 for FDRs, 
ππ→KK up to 1.5 GeV and unphysical region

JRP, A.Rodas,
Phys.Rev. D93 (2016)

JRP, A. Rodas. J. Ruiz de Elvira, Eur.Phys.J. C77 (2017)

JRP, A.Rodas,
Eur.Phys.J. C78 (2018)

JRP, A.Rodas, 
arXiv:2010.1122. 

To appear in Physics 
Reports

• Precise πK threshold parameters



πK scattering length: S-wave lattice dispersive tension

• Threshold parameters relevant to test ChPT (NNLO at present).
• Present tension between lattice and dispersive results

Our Dispersive
SUM RULES
for 𝑎𝑎0−

Our dispersively Constrained
Fit to DATA (CFD)

JRP, A.Rodas, arXiv:2010.1122. To appear in Physics Reports



• We provide sum rule values for scattering lengths and slopes up to  D-waves. 

• Good consistency with CFD for S,P waves (constrained) and D-wave lengths

πK scattering lengths. All waves

JRP, A.Rodas, arXiv:2010.1122. To appear in Physics Reports



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

• Padé sequences to extract poles from local 
information: reduced model dependence on 
strange resonances

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As constraints: 
πK consistent fits up to 1.6 GeV

Partial-wave πK Dispersion Relations
(PWDR)

Need ππ→KK to rewrite left cut. Range optimized.

• From fixed-t DR: 
ππ→KK influence small.
κ/K0

∗(700) pole out of reach

• From Hyperbolic DR: 
ππ→KK influence important.
As πK Checks: 
Large inconsistencies

• As πK checks: Small inconsistencies. 

• As ππ→KK checks: Small inconsistencies. 
• As constraints: 

ππ→KK consistent fits 
from KK threshold to 1.5 GeV

• ALL DR TOGETHER as Constraints: 
πK consistent fits up to 1.1 GeV for PWDR,
up to 1.6 for FDRs, 
ππ→KK up to 1.5 GeV and unphysical region

• Rigorous κ/K0
∗(700) pole 

JRP, A.Rodas,
Phys.Rev. D93 (2016)

JRP, A. Rodas. J. Ruiz de Elvira, Eur.Phys.J. C77 (2017)

JRP, A.Rodas,
Eur.Phys.J. C78 (2018)

JRP, A.Rodas,. 
PRL. 124 (2020)  17, 172001

JRP, A.Rodas, 
arXiv:2010.1122. 

To appear in Physics 
Reports

• Precise πK threshold parameters



Dispersive πK analysis from constrained fit to data JRP, A.Rodas, arXiv:2010.1122. To appear in Physics Reports

• FIT TO DATA (not solution but fit) CONSTRAINED WITH 16 DR
• Improved P1/2-wave (consistent with data) and P3/2

• Improved Pomeron

Now we have:

• FDR up to 1.6 GeV
• Fixed-t Roy-Steiner Eqs.
• Hyperbolic Roy Steiner Eqs.

o Both one and no-subtractions for F- HDR (only the subtracted one before)

o both in real axis (not HDR before) and complex plane
o Unphysical P-wave ππ→KK region VERY RELEVANT

• Realistic ππ→KK uncertainties (none before)
• Constrained ππ→KK input with DR 



Dispersive pole analysis from constrained fit to data JRP, A. Rodas, arXiv:2001.08153

And with our previous
“Pade sequence”
determination 
(670±18)-i(295±28) MeV

Compatible with 
Paris group
Decotes-Genon-Moussallam 2006

(658±13)-i(278.5±12) MeV

When using the constrained fit to data both poles come out nicely compatible 

No sub:  (648±6)-i(283±26) MeV
1 sub: (648±7)-i(280±16) MeV

JRP, A. Rodas. J. Ruiz de Elvira, Eur.Phys.J. C77 (2017)

We also provide pole positions for the K1∗(892),



• πK and ππ →KK data do not satisfy well basic dispersive constraints

• Using dispersion relations as constraints we provide simple and 
ready to use consistent data parameterizations. 

• We have implemented partial-wave dispersion relations whose 
applicability range reaches the kappa pole. 

• We have also derived and used SUM RULES to obtain precise 
threshold parameters 

• We confirm previous studies and provide a precise determination of 
the κ/K0*(700) parameters FROM DATA. A good control on the 
left/circular cuts is needed to claim this precision.

• This resonance will be considered “well-established” in next RPP, 
completing the nonet of lightest scalars.

Summary



EPILOGUE:
Long way since  1966 TO DO LIST

Confirm the κ/K0*(700) 

Confirm flying saucers

Confirm Nessie

Abominable Snowman

OUTLOOK

* C. Hanhart, private communication

At last @PDG 2021* !!

Thank you!
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