LUNA results on deuterium burning and cosmological implications

INFN Torino

Nuclear Astrophysics: an interdisciplinary field

16/02/2021

Francesca Cavanna

The Origin of the Elements

1 H	Origin of the elements									He							
3	4		Big) ban	g			Supe	ernov	а		5	6	7	8	9	10
Li	Be		Spa	allati	on			R-Pro	ocess			В	С	Ν	0	F	Ne
6.941	9.012			w-ma	ss st	ar		Artifi	cial			10.81	12.01	14.01	16.00	19.00	20.18
11	12					13 14 15					16	17	18				
Na	Mg		1 1410	33100	star							A	Si	P	S	CI	Ar
22.99	24.30	22	22	133	24	36	26	37	30	20	20	26.98	28.09	30.97	32.06	35.45	39.95
19	6		T :	² V	Cr	Mn	Ea	"co	Mi	°	Zn	51 C 2	č	Åc	50	Dr	²⁰ Vr
20.10	Ca	SC	47.97	50.04	52.00	54.04	FE OA	59.03	59.60	Cu	65 20	Ga	De	AS	79.06	DI	NI 02 00
37	38	39	47.07	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Aq	Cd	In	Sn	Sb	Те		Xe
85.47	87.62	88.91	91.22	92.91	95.96	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	AC	RT	DD	Sg	BU	HS	Mt	DS	кg	Cn	Nn	FI	MC	LV	IS	Og
(223)	(226)	(227)	(267)	(268)	(271)	(272)	(270)	(276)	(281)	(280)	(285)	(284)	(289)	(288)	(293)	(294)	(294)
		and the second s															
		58	59	60	61	62	63	64	65	66	67	68	69	70	n		
		Ce	Pr	Nd	Pm	Sm	Eu	Gd	ID	Dy	HO	Er	Im	Yb	Lu		
		140.1	140.9	144.2	(145)	150.4	152.0	157.2	158.9	162.5	164.9	167.3	168.9	173.1	175.0		
		Th	Da	11	Np	Du	Am	Cm	BL	Cf	Fe	Em	Md	No	Ir		
		222.0	221.0	778.0	(737)	(244)	(242)	(247)	DK	(051)	(252)	(257)	(25.0)	(250)	(767)		
		252.0	251.0	230.0	(257)	(244)	(243)	12471	(247)	(231)	12321	2371	1230)	(223)	(202)		

Francesca Cavanna

The Origin of the Elements

Challenges of nuclear astrophysics experiments

Relevant energy range

Low energies \implies small cross sections

Experimental Challenges of Direct Measurement

Francesca Cavanna

How to improve the signal-to-noise ratio?

Laboratory for Underground Nuclear Astrophysics

Radiation	LNGS/surface				
Muons	10-6				
Neutrons	10 ⁻³				

LNGS (1400 m rock shielding \equiv 4000 m w.e.)

Francesca Cavanna

INFN To

Gamma background reduction at LNGS

Francesca Cavanna

LUNA experimental setup

Francesca Cavanna

Recent achievement

A new paper is out!

nature

Explore our content V Journal information V

nature > articles > article

Article | Published: 11 November 2020

The baryon density of the Universe from an improved rate of deuterium burning

V. Mossa, K. Stöckel, F. Cavanna, F. Ferraro, M. Aliotta, F. Barile, D. Bemmerer, A. Best, A. Boeltzig, C. Broggini, C. G. Bruno, A. Caciolli, T. Chillery, G. F. Ciani, P. Corvisiero, L. Csedreki, T. Davinson, R. Depalo, A. Di Leva, Z. Elekes, E. M. Fiore, A. Formicola, Zs. Fülöp, G. Gervino, A. Guglielmetti, C. Gustavino \boxdot , G. Gyürky, G. Imbriani, M. Junker, A. Kievsky, I. Kochanek, M. Lugaro, L. E. Marcucci, G. Mangano, P. Marigo, E. Masha, R. Menegazzo, F. R. Pantaleo, V. Paticchio, R. Perrino, D. Piatti, O. Pisanti, P. Prati, L. Schiavulli, O. Straniero, T. Szücs, M. P. Takács, D. Trezzi, M. Viviani & S. Zavatarelli \boxdot -Show fewer authors

Nature 587, 210–213(2020) Cite this article 1610 Accesses 97 Altmetric Metrics

Big Bang Nucleosynthesis

- ✓ BBN occurs 3 minutes after Big Bang
- ✓ After BBN we have mainly H and ⁴He plus small amounts of D, ³He, ⁶Li and ⁷Li

The primordial deuterium abundance

- The primordial deuterium abudance [D/H] can be obtained by:
 - Observed abundance
 Direct astronomical observations

Predicted abundance (BBN theory):

From BBN theory, knowing the cosmological parameters and the cross sections of the processes responsible for D creation and destruction $[D/H]_{BBN}$

Depending on the adopted cross sections

 $[D/H]_{BBN} = (2.587 \pm 0.055) \times 10^{-5}$ $[D/H]_{BBN} = (2.439 \pm 0.052) \times 10^{-5}$

Planck, A&A 641 (2018) A6

✓ By comparing $[D/H]_{OBS}$ and $[D/H]_{BBN}$ → the universal barion density Ω_{B} and/or N_{eff} can be derived

The primordial deuterium abundance

The primordial deuterium abundance is sensitive to the baryon density of the Universe

The primordial deuterium abundance

The primordial deuterium abundance is also sensitive to the number of neutrino species, N_{eff} = 2, 3 and 4

$D(p,\gamma)^{3}$ He: State of the art

 The uncertainty on [D/H]_{BBN} is related to the knowledge of the reactions involved in the deuterium production and distruction

Reaction	σ _D 10 ⁵			
p(n,γ)D	0.002			
D(p,γ)³He	0.062			
D(d,n)³He	0.020			
D(d,p) ³ H	0.013			

✓ The uncertainty on $[D/H]_{BBN}$ is dominated by the uncertainty on the D(p, γ)³He S-factor

$D(p,\gamma)^{3}$ He: State of the art

- Experimental data: two datasets currently available in the BBN energy range with a systematic error of 9-15%
- ✓ Ab initio calculations disagree with experimental data

D(p,γ)³He: experimental setup

Measurement goal:

- Cross section measurement with ~3% accuracy
- ✓ E_{cm}= 30-300 keV

Experimental setup:

- Proton beam
- D₂ windowless gas target (P=0.3 mbar)
- HPGe detectors for γ -rays

D(p,γ)³He: experimental setup

✓ Windowless gas target setup

 $\sigma(E) = \frac{N_{\gamma}(E)}{N_{p} \int_{0}^{L} \rho(z) \varepsilon(z, E_{\gamma}) W(z) dz}$

Source	Method	Δ S/S(%)	
Beam energy	Direct measurement	0.2	
Energy loss	Low gas pressure	0.04	
T and P profiles	Direct measurement	1.0	
Beam heating	Direct measurement	0.5	
Gas purity	Data sheet	0.1	
Beam current	Calorimeter calibration	1.0	
Efficiency	Direct measurement	2.0	
Instrumental effects	Pulser method	0.2	
Angular distribution	Simulations	0.5	
Total		2.6	

D(p,γ)³He: spectra

✓ Spectrum obtained @ $E_p = 50$ keV with D_2 gas target (P=0.3 mbar)

✓ Spectrum obtained @ $E_p = 50$ keV with ⁴He gas target (P=0.4 mbar)

D(p,γ)³He: spectra

- ✓ Spectrum obtained @ E_p = 395 keV with D_2 gas target (P=0.3 mbar)
- ✓ Spectrum obtained @ E_p = 395 keV with ⁴He gas target (P=0.3 mbar)

D(p,γ)³He: S-factor results

The baryon density of the Universe

- ✓ Baryon density obtained with PARTHENOPE code by comparing [D/H]_{OBS} and [D/H]_{BBN}
- N_{eff} = 3.045, fixed
- Comparison with Planck results

Analysis performed by Ofelia Pisanti and Gianpiero Mangano

Evidence of new physics?

- ✓ Likelihood analysis in wich both $\Omega_{\rm b}{\rm h}^{\rm 2}$ and ${\rm N}_{\rm eff}$ were left as free parameters
 - D+CMB case with (D/H)_{obs} and (D/H)_{BBN}, combined with the CMB baryon density from Planck
 - D+Y_p case with observed and predicted values of both the deuterium abundance and the ⁴He mass fraction, Y_p

The future

LUNA MV: A 3.5 MV accelerator

Francesca Cavanna

5.5 m

LUNA MV: scientific program (first five years)

✓ ${}^{14}N(p,\gamma){}^{15}O$ reaction: commisioning measurement

- Already studied at LUNA
- ↔ High scientific interest: Solar Standard Model prediction for the solar composition → a measurement in a wide energy range is needed
- Neutron sources for the weak and main s-process: ¹³C(α,n)¹⁶O and ²²Ne(α,n)²⁵Mg
 - ¹³C(α,n)¹⁶O: for a better extrapolation at low energies a measurement in a wide energy range is needed
 - ²²Ne(α,n)²⁵Mg: in the energy region of interest 570 keV < E_α < 800 keV no direct experimental data are available</p>
- ¹²C + ¹²C: of crucial importance for C burning. It influences the chemical composition of the Universe

Conclusions

The LUNA result settles the most uncertain nuclear physics input to BBN calculations and substantially improve the reliability of using primordial abundances as probes of the physics of the early Universe

Francesca Cavanna

The LUNA collaboration

- A. Boeltzig, A. Compagnucci*, M. Junker | INFN LNGS/ *GSSI, L'AQUILA, Italy
- D. Bemmerer, K. Stoeckel | HZDR Dresden, Germany
- C. Broggini, A. Caciolli, R. Depalo, P. Marigo, R. Menegazzo, D. Piatti, J. Skowronski | Università di Padova and INFN Padova, Italy
- A. Formicola, C. Gustavino | INFN Roma1, Italy
- L. Csedreki, Z. Elekes, Zs. Fülöp, Gy. Gyurky, T. Szucs | MTA-ATOMKI Debrecen, Hungary
- M. Lugaro | Konkoly Observatory, Hungarian Academy of Sciences, Budapest, Hungary
- O. Straniero | INAF Osservatorio Astronomico di Collurania, Teramo, Italy
- P. Corvisiero, F. Ferraro, P. Prati, S. Zavatarelli | Università di Genova and INFN Genova, Italy
- A. Guglielmetti, E. Masha | Università di Milano and INFN Milano, Italy
- A. Best, G.F. Ciani, A. Di Leva, G. Imbriani, D.Rapagnani Università di Napoli and INFN Napoli, Italy
- F. Cavanna, P. Colombetti, G. Gervino | Università di Torino and INFN Torino, Italy
- M. Aliotta, C. Bruno, T. Davinson | University of Edinburgh, United Kingdom
- F. Barile, V. Mossa, V. Paticchio, R. Perrino*, L. Schiavulli Università di Bari and INFN Bari/*Lecce, Italy

Extra slides

A new tension in the cosmological model from primordial deuterium?

Cyril Pitrou 🖾, Alain Coc, Jean-Philippe Uzan, Elisabeth Vangioni

Monthly Notices of the Royal Astronomical Society, stab135, https://doi.org/10.1093/mnras/stab135 Published: 20 January 2021

Abstract

Recent measurements of the $D(p,\gamma)^3$ He nuclear reaction cross-section and of the neutron lifetime, along with the reevaluation of the cosmological baryon abundance from cosmic microwave background (CMB) analysis, call for an update of abundance predictions for light elements produced during the bigbang nucleosynthesis (BBN). While considered as a pillar of the hot big-bang model in its early days, BBN constraining power mostly rests on deuterium abundance. We point out a new $\simeq 1.8\sigma$ -tension on the baryonic density, or equivalently on the D/H abundance, between the value inferred on one hand from the analysis of the primordial abundances of light elements and, on the other hand, from the combination of CMB and baryonic oscillation data. This draws the attention on this sector of the theory and gives us the opportunity to reevaluate the status of BBN in the context of precision cosmology. Finally, this paper presents an upgrade of the BBN code PRIMAT.

The baryon density of the Universe

- Baryon density obtained by comparing [D/H]_{OBS} and [D/H]_{BBN}
- N_{eff} = 3.045, fixed
- ✓ Comparison with Planck results

$$\mathcal{L}_{D+3\nu}(\Omega_{b}h^{2}) = \exp\left[-\frac{\left[(D/H)_{BBN}(\Omega_{b}h^{2}) - (D/H)_{obs}\right]^{2}}{2\left[\sigma_{BBN}^{2}(\Omega_{b}h^{2}) + \sigma_{obs}^{2}\right]}\right]$$

Evidence of new physics?

- ✓ Likelihood analysis in wich both $\Omega_{\rm b}{\rm h}^{\rm 2}$ and ${\rm N}_{\rm eff}$ were left as free parameters
 - D+CMB case with (D/H)_{obs} and (D/H)_{BBN}, combined with the CMB baryon density from Planck
 - D+Y_p case with observed and predicted values of both the deuterium abundance and the ⁴He mass fraction, Y_p

✓ Goal: 3% accuracy on the D(p, γ)³He cross section (Q= 5.5 MeV)

$$\checkmark \quad \sigma(E) = \frac{N_{\gamma}(E)}{N_p \int_0^L \rho(z) \varepsilon(z, E_{\gamma}) W(z) dz}$$

✓ Goal: 3% accuracy on the D(p, γ)³He cross section (Q= 5.5 MeV)

 $\checkmark \quad \sigma(E) = \frac{N_{\gamma}(E)}{N_p \int_0^L \rho(z) \varepsilon(z, E_{\gamma}) W(z) dz}$

✓ Goal: 3% accuracy on the D(p, γ)³He cross section (Q= 5.5 MeV)

 $\checkmark \quad \sigma(E) = \frac{N_{\gamma}(E)}{N_p \int_0^L \rho(z) \varepsilon(z, E_{\gamma}) W(z) dz}$

Primordial deuterium abundance

✓ Deuterium abundance:

$$\frac{D}{\mathrm{H}} = 2.51 \times 10^{-5} R_{pn\gamma}^{-0.20} R_{dp\gamma}^{-0.31} R_{ddn}^{-0.51} R_{ddp}^{-0.42} \left(\frac{\omega_b}{0.02242}\right)^{-1.61} \left(\frac{\tau_n}{879.4\,\mathrm{s}}\right)^{0.43} \left(1 + \frac{\Delta N_{\mathrm{eff}}}{3.045}\right)^{0.41}$$

✓ Chi2:

$$\chi^{2}(a_{l},\omega_{k}) = \sum_{i_{k}} \frac{(S_{th}(E_{i_{k}},a_{l}) - \omega_{k} S_{i_{k}})^{2}}{\omega_{k}^{2} \sigma_{i_{k}}^{2}} + \sum_{k} \frac{(\omega_{k}-1)^{2}}{\epsilon_{k}^{2}} \equiv \chi^{2}_{stat} + \chi^{2}_{norm}$$

$$\rho \approx \rho_{\rm rad} = \frac{\pi^2}{30} \left(2 + \frac{7}{2} + \frac{7}{4} N_\nu \right) T^4$$

Baryon density of the Universe

	$\Omega_{\rm b}h^2$	δ(%)	N _{eff}
D + 3v (without LUNA data)	0.02271±0.00062	2.73	3.045
D + 3v (with new LUNA data)	0.02233±0.00036	1.61	3.045
CMB+3v	0.02230 ± 0.00021ª	0.94	3.045
Planck + 3v	0.02236 ± 0.00015	0.67	3.045
(D + CMB)	0.02224 ± 0.00022	0.99	2.95 ± 0.22
$(D + Y_p)$	0.0221±0.0006	2.71	2.86 ^{+0.28} _{-0.27}

 $D/H_{BBN} = (2.52 \pm 0.03 \pm 0.06) \ 10^{-5}$

Before and after LUNA measurement

	$\sigma_{\rm D}^{(i)}\cdot 10^5$	$\delta\sigma_i^2/\sigma_{\rm tot}^2~(\%)$	$(\sigma_{\rm D}^{(i)})_{\rm old}\cdot 10^5$	$(\delta\sigma_i^2/\sigma_{\rm tot}^2)_{\rm old}$ (%)
$R_{pn\gamma}$	0.002	0.3	0.002	0.1
$R_{dp\gamma}$	0.027	58.5	0.062	87.0
R_{ddn}	0.018	26.9	0.020	9.1
R_{ddp}	0.013	14.2	0.013	3.8

Cosmological parameters and D/H abundance

