Beyond PADME: prospects

Venelin Kozhuharov

for the PADME collaboration

Sofia University* & LNF-INFNd

Fisica Fondamentale a Frascati FFF

13.01.2021

* partially supported by BNSF: KP-06-D002_4/15.12.2020, DN08-14/14.12.2016; & LNF-SU 70-06-497/07-10-2014

Outline

- Technique
- PADME @ LNF
- Upgrades & improvements
- Conclusions

Mass

All numbers and estimates are preliminary

New light particles

• Dark photon A`

$$\boldsymbol{L} \sim \boldsymbol{g}' \boldsymbol{q}' \, \overline{\Psi} \, (\gamma_{\mu} + \alpha'_{a} \gamma_{\mu} \gamma^{5}) \Psi A'^{\mu}, \text{ usually } \alpha'_{a} = 0$$

- $\quad q_f \to 0 \text{ for some flavours}$
- DM particles
 - χ might be light enough to be produced through A` decays
- ALPs
 - a.k.a PQ axion
 - pseudo scalars, with a coupling to photons
- U(1) breaking mechanism
 - Higgs like mass for A \rightarrow leading to a new scalar with mass $m_{h^{\uparrow}} \sim m_{A^{\uparrow}}$
 - Stuckelberg mechanism for making A` massive
 - The only new light state remains A`
 - Natural in superstring models

 $L_{mix} = -\frac{\epsilon}{2} F_{\mu\nu}^{QED} F_{dark}^{\mu\nu}$

Dark Photon as an example

- Part of the phenomenology of the Dark Photon depends on what we don't know
 - Is it really a mediator between the visible and the hidden world?
 - Is it a manifestation of a Fifth Force?
 - How does it come to couple to SM particles?
 - Mixing with SM gauge boson?
 - Universal versus non-universal couplings?
- And moreover what the hidden world looks like?

Light

Constrained initial state

- Closure of the kinematics of the process
- Constrained initial states
 - A' as a product of SM particles decays: π^0 , ρ , η
 - e+e- colliders
 - Annihilation
- Possible A' final states
 - A' \rightarrow SM particles, all states reconstruction
 - Provides significant background suppression
 - A' \rightarrow DM particles
 - Determination of A' properties through missing momentum/energy/mass

- Positron beam on a thin target
- Positron momentum is determined by the accelerator characteristics
- Missing mass resolution: annihilation point, E_{y} , ϕ_{y}

 $\frac{\sigma(e^+e^- \to U\gamma)}{\sigma(e^+e^- \to \gamma\gamma)} = \frac{N(U\gamma)}{N(\gamma\gamma)} * \frac{Acc(\gamma\gamma)}{Acc(U\gamma)} = \epsilon^2 * \delta,$

- Clear 2 body correlation
- Background minimization
 - Best possible resolution on energy/angle measurement
 - Dominant process in e+/e- interactions with matter is bremsstrahlung
 - Photons vetoing
 - Minimize the interaction remnants + vetoing

Cross section enhancement with the approach of the production threshold

Positron Annihilation into Dark Matter Experiment

- Small scale fixed target experiment
 - e⁺ @ Frascati Beam Test Facility
 - Solid state target
 - Charged particles detectors
 - Calorimeter
 - Beam monitoring system

- Two major sections: inside and outside the dipole magnet
- Austenitic steel, thermally treated to reach the desired magnetic permeability

PADME @ BTF

	Electrons	Positrons
Maximum beam energy (E _{beam})[MeV]	750 MeV	550 MeV
Linac energy spread [Dp/p]	0.5%	1%
Typical Charge [nC]	2 nC	0.85 nC
Bunch length [ns]	1.5 – 40 (can reach 200 in 2016)	
Linac Repetition rate	1-50 Hz	1-50 Hz
Typical emittance [mm mrad]	1	\sim 1.5
Beam spot s [mm]	<1 mm	
Beam divergence	1-1.5 mrad	

- BTF line completely dismounted
- Hall and infrastructure refurbished, control room moved
- All the components placed to their new nominal position

Outstanding support from the laboratory!

PADME RUNs

PADME RUNs

- PADME commissioning and Run-1 started in Autumn 2018 and ended on February 25th
 - \sim ~7 x 10¹² positrons on target recorded with secondary beam
 - PADME DAQ, Detector, beam, collaboration commissioning
 - Data quality and detector calibration
- PADME test beam data
 - July 2019, few days of valuable data
 - Certification of the primary beam
 - Detector performance/calibration checks

2020 era – RUN 2: primary beam

- July 2020
 - New environment/detector parameter monitoring and control system
 - Remote operation confirmation
- Autumn 2020:
 - A long data taking period with $O(5x10^{12}) e^+$ on target

Target performance

- Precise measurement and control of the beam parameters
 - Position
 - Multiplicity
 - Beam steering diagnostics
- Extensive work on calibration

$\frac{\text{PADME Diamond}}{\text{CCD}} \approx 12 \ \mu\text{m}$

PADME data

2020 beam

- 2020 data taking with optimized beam
 - Beam induced background decreased by a factor of at least 5
 - Optimized bunch length
- Improved calorimeter calibration
- EVeto & PVeto timing calibration performed

New physics channels

Dark photon ٠ ллллл А` ······ e⁻ e Z www.ww A` e ······γ e^+ e^+ ALPs • Production similar to A` vvv a Primakoff production arXiv:2012.07894 a Light scalar coupling to A` • arXiv:2012.04754 - Associate production of A` and h` - h` decays into A`A` if $m_{h^{\circ}} > 2m_{A^{\circ}}$ $A^{} \rightarrow e^+e^-$,

New physics channels

- Dark photon
 - A^{\rightarrow} invisible, main PADME New Physics channel
 - Missing mass technique, indirect sensitivity to χ parameters
 - $A` \rightarrow e+e-$
 - Missing mass technique
 - Detection of the final state in EVeto & PVeto
- ALPs
 - Searching for ALP through $a \rightarrow \gamma \gamma$ decay
 - Multiphoton events \rightarrow cluster separation in the calorimeters
 - ALPs to invisible: similar to the A^{\rightarrow} invisible searches, see Luc Darmé arXiv:2012.07894
- Light scalar coupling to A`
 - Searching through multilepton events
 - Present momentum resolution of PADME is limitted
 - Assuming that the charged particles originate from the center of the beam at the target
 - Using a single point (impact point in the vetoes) for reconstruction
 - Possible to arrive to ~5 MeV momentum resolution
 - Time coincidence of the multileptons is crucial in the present setup!

arXiv:2012.04754

- The limit in the PADME sensitivity originates from
 - Statistics, sensitivity ~ sqrt(N)
 - Background due to overlapping, scales as N
 - e⁺ beam energy
- ALPs at PADME
 - Sensitivity estimation ongoing
 - Any Light Particle with mass below 23 MeV
- Multilepton events
 - Electron and positron detector, sensitivity studies ongoing

N.B. Different experimental techniques, sometimes different prior assumptions!

ΡΑΟΜΕ @ DΑΦΝΕ

crystal

- $DA\Phi NE$ the Frascati Φ -factory •
 - LINAC + e+/e- storage ring
- LINAC rate 50 Hz, 49 Hz for users •
- Beam energy O(550 MeV)•

POSEYDON arXiv:1711.06877

DADAE resonant extraction

- Long beam from the Linac (up to 324 ns)
 - 0.5 % momentum spread at injection
- RF off monochromatic extraction due to synchrotron losses
- Wigglers off (on), losses \sim 3 (6) keV per • turn
 - Spill length: 0.4 (0.2) ms
- $\Delta p/p = 1.4 \times 10^{-3}$
- New injection and extraction lines

new injection chain

extraction

Ultra slow extraction

- Use crystal channelling ۲
- $N_{e+} = 2*10^{12}$ (1 A current in 120) bunches)
- Revolution time 324 ns
- 1 extracted particle per turn per bunch \rightarrow ~3*10⁸ e⁺ per second

septum

Necessity: DAQ upgrade

preliminary

- Present PADME DAQ system largely based on CAEN V1742
 - Digitizer, up to 5GS/s
 - Switched capacitor, limit of 1024 samples
 - RO window O(1ns)
 - Trigger rate limit ~ 1 kHz (data throughput ~80 MB/s)
 - ~200 us dead time (necessary conversion time)
- Upgrade options
 - FLASH ADC with high data throughput
 - ~650 calorimetric channels (616 ECAL + 25 SAC + extra)
 - 250 channels SiPM
 - O(1000) channels total
 - Preferred solution: uniform RO
 - O(400) euro per channel? \rightarrow total cost for upgrade O(500 k).

other options ...

Hardware upgrades

preliminary

- Charged particle detectors
 - Present setup: extruded scintillator + WLS fiber + SiPM
 - Time resolution for the whole detector O(700 ps)
 - Design goal verified
 - Matching the ECal time resolution for background suppression
- Double readout possibilities
 - Improve the time resolution \rightarrow O(500 ps)
 - To match better the SAC time resolution and improve SAC + PVeto searches
 - Perform charged particle only searches
 - Multileptons, $A^{} \rightarrow e^+e^-$, etc.
- Double readout scale
 - Custom FEE developed at LNF-INFN
 - Cost FEE (60 k) + RO (40k) \rightarrow O(100k)
 - Time scale: 6 months aggressive, 1 year realistic
 - Including all production, commissioning, installation and in-place commissioning

Setup modification

preliminary

- Charged particle tracking
- PADME proved to be able to operate an ultra-thin Si-pixel detector in vacuum: MIMOSA with 50 um thickness

- Dead-time free DAQ system is necessary
- Timepix like Si pixel chip (*Timepix4*?)
 - ~50 x 50 µm² pixel
 - 500 MHits/s

- Vertex reconstruction
 - Additional background suppression for the missing mass searches
 - Opens a door to new interesting channels
 - $h' \rightarrow e^+e^-, A' \rightarrow e^+e^-$
 - Multiple dark sector particles production
 - $A' h' \rightarrow 6e$
 - Displaced decays
 - Coupling constant suppression studies, etc.
 - One of the most difficult techniques
 - Cost O(200k)
 - Could easily reach 500k
 - Timescale: 3 years
 - Based on Timepix & MIMOSA installation

Analysis improvement

preliminary

- Present analysis is largely classical cut-based analysis
- Advanced data analysis techniques may improve the understanding and the information extraction from data
- Hit reconstruction
 - Waveform \rightarrow set of (hits, time, energy)
 - Sequence to sequence neural networks (used in natural language processing)
 - Double pulse separation \rightarrow shape analysis and CNN application
 - Preliminary studies indicate possibility to go from O(20 ns) to O(5 ns) double pulse separation for SiPM data
- Cluster reconstruction
 - Sequence of hits with time & energy \rightarrow sequence of clusters E. Long, SIF
 - DNN could improve the resolving of overlapping clusters
- Physics channel selection and background suppression
 - Event topology
 - Training on electron beam, extracting signal from positron beam data

A new CHIST-ERA project has just started in cooperation with Sapienza 3 years timescale

E. Long, SIF 2020 congress

"Missing" techniques and synergy

 $\Delta P P_{miss} P_{beam} P_{tracker}$

- counting the beam particles
- Different techniques, different background contribution, different detector requirements (missing momentum requires good momentum resolution while missing particles – excellent detection efficiency)
 - But all missing techniques require as good as possible knowledge of the initial state
- A single PADME-like experiment at LNF sensitive to
 - various NP particles
 - various production mechanisms within a particular model
 - various final states for a particular model

Prospects

preliminary

	PADME	PADME @POSEYDON	PADME@DAΦNE Ultra slow
Place	LNF	LNF	LNF
Beam energy	490-550 MeV	550 MeV	550 MeV
M _A , limit	23 MeV	23 MeV	23 MeV
Target thickness	2x10 ²² e ⁻ /cm ²	2x10 ²² e ⁻ /cm ²	2x10 ²² e ⁻ /cm ²
Beam intensity	8 x 10 ⁻¹¹ mA	3 x 10 ⁻⁷ mA	4 x 10 ⁻⁸ mA
$e^+e^- \rightarrow gg rate [s^{-1}]$	15	4*10 ⁴	4500
e² limit (plateau)	10 ⁻⁶ (10 ⁻⁷ SES)	10 -8 *	10 ⁻⁹ - 10 ⁻¹⁰ SES **
Time scale	now	2025	2025
Status	Run1 & Run2 completed	FFF	FFF

* PADME background level assumption! ** with zero background assumption!

Conclusion

- Missing mass searches provide a universal probe to new light states
- Using constrained initial state allows significant background suppression and control
- PADME proved to be able to run an experiment even in extraordinary conditions
- Data analysis ongoing
 - Secondary beam data and primary beam data
- Various directions for improvement, mainly depending on the
 - But the DAQ upgrade seem to be unavoidable in any of the scenarios
- 10¹⁶ e⁺ on target provide access to unexplored region
 - Especially in the single particle extraction mode
- Upgrades of the order of 500 1000 kE
- Time scale
 - Aggressive for most of the activities 2-3 years from NOW (PADME construction)!
 - Realistic having a fully operational setup for high statistics e+ run by 2025