QUAX-ay: Search for the QCD Axion with the LNF Haloscope

CLAUDIO GATTI FOR THE QUAX-LNF GROUP

FFF - LNF January 13th 2021

- QUAX R&D
- QUAX Experiment at LNF
 - Multicavity approach
 - a. The Resonant Cavities
 - b. The Magnet
 - c. Signal Amplification
 - d. Data Acquisition
 - e. Single Photon Detection

OUTLINE

QUAX R&D 2018-2020

Created by Chameleon Design from Noun Project

QUAX: Quest for Axions

$$\mathcal{L} = i\frac{g_d}{2}a\left(\bar{N}\sigma_{\mu\nu}\gamma^5N\right)F^{\mu\nu} + i\frac{g_{aNN}}{2m_N}\partial_{\mu}a\left(\bar{N}\gamma^{\mu}\gamma^5N\right) + i\frac{g_{aee}}{2m_e}\partial_{\mu}a\left(\bar{e}\gamma^{\mu}\gamma^5e\right) + g_{a\gamma\gamma}aE \cdot B$$

QUAX-ae with Quantum-Limited Ferromagnetic Haloscope

Experimental Setup	
B [T]	0.5
N. of GaYIG Sphere (diameter =2.1 mm)	10
n _s [spin/m³]	2.1×10 ²⁸
τ _{min} [μs]	0.1
Frequency [GHz]	10.7
Cu-cavity Q (mode TM110)	50,000
T _{cavity} [mK]	90
T amplifier [K] (JPA)	0.5-1

Phys. Rev. Lett. **124**, 171801 (2020) EPJC (2018) 78:703

QUAX-a γ Searh for QCD Axion with m_a=43 μ eV

B [T]	8
Frequency [GHz]	10.4
Cu cavity Q (mode TM010)	76,000
T _{cavity} [mK]	100
T amplifier [K] (JPA)	0.5

Arxiv:2012.09498 Phys. Rev. D **99**, 101101(R) (2019)

Created by Mohamed Mbarki from Noun Project

QUAX EXPERIMENT 2021-2025

QUAX 2021-2025

	LNF	\mathbf{LNL}
Magnetic field	9 T	14 T
Magnet length	$40~{\rm cm}$	$50~\mathrm{cm}$
Magnet inner diameter	9 cm	$12 \mathrm{~cm}$
Frequency range	8.5 - 10 GHz	9.5 - 11 GHz
Cavity type	Hybrid SC	Dielectric
Scanning type	Inserted rod	Mobile cylinder
Number of cavities	7	1
Cavity length	0.3 m	0.4 m
Cavity diameter	$25.5 \mathrm{~mm}$	58 mm
Cavity mode	TM010	pseudoTM030
Single volume	$1.5 \cdot 10^{-4} \text{ m}^3$	$1.5 \cdot 10^{-4} \text{ m}^3$
Total volume	$7 \otimes 0.15$ liters	0.15 liters
Q_0	300 000	1 000 000
Single scan bandwidth	630 kHz	30 kHz
Axion power	$7\otimes 1.2\cdot 10^{-23}~{\rm W}$	$0.99 \cdot 10^{-22} \text{ W}$
Preamplifier	TWJPA/INRIM	DJJAA/Grenoble
Operating temperature	$30 \mathrm{mK}$	30 mK
Performance for KSV	Z model at 95% c.	l. with $N_A = 0.5$
Noise Temperature	0.43 K	$0.5~{ m K}$
Single scan time	3100 s	69 s
Scan speed	$18 \mathrm{~MHz/day}$	$40 \mathrm{~MHz/day}$
Performance for KSVZ model at 95% c.l. with $N_A = 1.5$		
Noise Temperature	0.86 K	1 K
Single scan time	12500 s	280 s
Scan speed	4.5 MHz/day	10 MHz/day

Assembly of haloscopes at LNL and LNF

HEMT (6-20 GHz) 4K amplifier

Sample holder for SC chip at 10 mK for single photon device

4 RF lines installed from 300 K to MixCh

Leiden C	F-CS-110-1000
Sumitomo PT	1.5 W at 4.2 K
Cooldown time (with LN)	2 days
Base temperature (measured)	8.5 mK
Cooling power at 100 mK (measured)	450 μW (up to 700 μW with a new pumping system)

FET LNA 8-12 GHz and IQ-mixer (10-12 GHz)

Room T ampli & DAQ

QUAX-LNF Haloscope

Data analysis

٠

٠

٠

•

QUAX-LNF Resonant Cavity

2) Superconducting coating
NbTi
Nb₃Sn
YBCO

Di Gioacchino et al IEEE TRANS. APP. SUPERCOND. 29, 5 (2019)

3) Frequency tuning

4) Multicavity fabrication

QUAX-LNF Magnet

- 9T SC Magnet (AMI)
- 10 cm bore
- 40 cm height
- Cancellation coil to host SC devices
- New radiation screens
- Delivery Summer 2021

Signal Amplification (DART WARS): TWJPA

Travelling Wave Josephson Parametric Amplifiers amplify microwave signal over a broad range adding the minimum noise set by quantum mechanics.

DART WARS

Detector Array Readout with Travelling Wave AmplifieRS Call GRV approved by INFN

Signal Amplification: TWJPA

Pump On

Preliminary results November 2020

DATA Acquisition and Analysis

Single Microwave Photon Detection with JJ

SIMP Single Microwave Photon detection

Incoming photon

J. Phys.: Conf. Ser. 1559 012020

Journal of Low Temperature Physics https://doi.org/10.1007/s10909-020-02381-x

Single Microwave Photon Detection with Qubits

(a)

PHYS. REV. X 10, 021038 (2020)

arXiv:2008.12231

QUAX-LNF Group

Quax LNF (CSN II)

Danilo Babusci

Daniele Di Gioacchino

Claudio Gatti (RL)

Giovanni Maccarrone

Dario Moricciani

Alessio Rettaroli

Simone Tocci

David Alesini

Carlo Ligi

Thanks also to the collaboration of: S. Lauciani (mechanical design of resonant cavities) P. Ciambrone (servizio elettronica DR) P.Albicocco (DAQ) G. Papalino (electronics support) G. Pileggi (mechanical support) G. Ceccarelli (mechanical support) LNF mechanical workshop and services

SIMP LNF (CSN V)
Danilo Babusci
Fabio Chiarello
Daniele Di Gioacchino
Claudio Gatti (RN)
Giovanni Maccarrone
Alessio Rettaroli
Guido Torrioli
Luca Piersanti
David Alesini
Matteo Beretta
Carlo Ligi (RL)
Bruno Buonomo

Giulietto Felici

Luca Foggetta

Sandro Gallo

DART WARS LNF (Call CSN V)

Daniele Di Gioacchino

Claudio Gatti

Giovanni Maccarrone

Luca Piersanti

Carlo Ligi (RL)

SUPERGALAX LNF (H2020)

Daniele Di Gioacchino

Claudio Gatti (RN)

Carlo Ligi