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Plan

- What will not be discuss
- The likelihood function £

* Which bad treatments do frequentist
adepts impose to £ ?

* What do Bayesian illusionists cook up out
of £7?

* Monte Carlo likelihood sampling methods
» Parameter forecasts
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Statistics are dangerous

» Can provide silly answers to consistent
questions

» Can provide (appearently) consistent
answers to silly questions
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Loosely-defined questions

P ; ILC =2
0 0

* "why does the large-scale universe looks
like it looks like?"
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Loosely-defined questions

Identify a strange property of P N
the data @

Compute many realizations of given
theory, and find that only ¢% of them have
this strange property... conclude that theory is wrong...

Mathematically dangerous because need to trust absolute
likelihood, even in tails

Conceptually dangerous because "strangeness” cannot be
quantified. If theory correct, probability that "such a strange
thing can happen” should be significant, but probability that "this
strange thing happens” can be small.

discussion in Hamann, Shafieloo & Souradeep 2009
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Loosely-defined questions

Claims based on anthropic arguments combined with some
probability calculation...

E.g..if p 1’4 > [a few] x 10-3eV, no star formation, no life !

so p /4 in the range from O to few 10-3eV ... and the fact
that we measure a value as large as ~10-3eV has a probability of
order one.

Assumes all values of p,!/4 a priori equiprobable: “flat prior on
p,4". Why not on on p,? Or on In[p,]?

Answer depends entirely on prior, which we cannot decide.

Will not face this questions... only interested in parameter
inference, eventually in model selection ...
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The likelihood function

 Question:
- " If one assumes a theoretical model and

some instrumental characteristics, what is
the probability of a given data set? "

Likelihood function: | £ (D|M (6;))
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The likelihood function

+ Function of D = (2§",...,23*) depending on:
- experimental noise

- theoretical predictions:
» deterministic theory: set of numbers
( th th

by )‘{0 }
» stochastic theory: probability distribution

1 |
Pligp(al’s o ay)
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The likelihood function

+ Ex: Gaussian theory and noise:
- Independent points:

- 1 (l (j)l‘)\' . Tth (91))2
L({x bs1) o I ‘ ; exp = .
. : l\/o-izl.ISt + O-t%h(g'l) )( Tinst T o th (9))
()l)s —th 2
¢ i ()l)s (9)) —_— ) 2
—2In L({277"}) = cste + Z P (Tth(e-i.) = cste 4+ x
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The likelihood function

+ Ex: Gaussian theory and noise:
- Correlated measurements:
S =3 (@9 = 20;)) CF (@ — 23 (6;))

I

data covariance matrix

(frequently, measurement in various bins are correlated
by instrument, data processing, binning)
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The likelihood function

+ Ex: Gaussian theory and noise:

- Correlated measurements:

SDSS P, (k)
Tegmark et al. 03

16/09/2010

Correlated

Decorrelated

(frequently, measurement in various bins are correlated

by instrument, data processing, binning)
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The likelihood function

+ Ex: CMB temperature, gaussian
fluctuations, ideal experiment:

0T

— (1) for each pixel, 6 ~ 7/lmax

4 T
0o = / dﬁlflm(ﬁ)%(ﬁ)
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The likelihood function

+ Ex: CMB temperature, gaussian
fluctuations, ideal experiment:

0T

— (1) for each pixel, 6 ~ 7/lmax

I T
0o = / dﬁlflm(ﬁ)%(ﬁ)

U [ obs|2
a
Cobs _ lm
: 7ol + 1
obs _ _th noise
al’m — alm, T alfrn
. . th/ . \ . .
16/09 gaussian, variance C} gaussian, uncorrelated, variance N, "

given by exp. sensitivity and resolution




The likelihood function

+ Ex: CMB temperature, gaussian
fluctuations, ideal experiment:

0T

—(n) for each pixel, 0 ~ 7/l ax
1

T
Hbs |2
L({apr}) o T exp [— iy ]
L]y \ LTI “H ¢ \TE2
'm \/le’t-ll N ATI‘?XP 2((*}11 + A\; ‘{1))

] 5

e [— L
T Cobs (2[ + I)Cobs
L C()bb x H [ _ ) oxXD {_ [
<{ [ }) [ (C[th _|_ ;NT;’XP I Q(C[th _l_ iNTleXp)
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The likelihood function

- Ex: CMB temperature, gaussian
fluctuations, real experiment:
* q,,, S are correlated by sky cut

* hoise is not isotropic
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The likelihood function

+ Ex: CMB temperature, gaussian
fluctuations, real experiment:

* Many other effects inducing correlations/
distorsions:
- instrument (beam shape, calibration, baseline drift...)
- data processing (time-ordered data = map = q,,,, C, )
- Foreground removal (point-like sources, etfc.)

- when possible, analytical modelling }(complica‘red)
- otherwise, Monte Carlo reconstruction ) likelihood
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The likelihood function

+ Ex: CMB temperature, gaussian
fluctuations, real experiment:

- Final likeliho

od = approximation

(precision vs. computability)

For WMAP7 <

" large I's : correlated gaussian C's

(non-trivial analytical approx. to cov. mat.)

_small I's : improved each time

(since WMAP3: correlated gaussian pixels)
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The likelihood function

+ Summary and message:
- For CMB & LSS data, likelihood is:

* Non-gaussian, involving correlations
- Difficult to estimate
- Always approximate

- Should be use with great care and not "over-intepreted” or
“over-trusted"...
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Frequentist approach

L (D|M(6;)) = only relevant quantity,
everything derives from it

"given a model and over many possible

observations, probability that nature

choose a particular parameter set {6}
proportional to £ “

(seen now as a function of 6.'s)
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Frequentist approach

- Based on intuition, not on theorems

- Maximum of L (D[M(0;)) gives goodness-
of-fit of model and best-fit parameters

- For each 6;, range in which

L (D|M(6;)) > threshold

= allowed range at given confidence level

16/09/2010
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Frequentist approach

Goodness-of-fit: frequentist's rule of thumbs:

- Given n = # of data points, m = # of params,
Q(x2In-m) = 1 - cumulative distr. func. of x%.m
= probability of obtaining a better fit

T

- Assumes that ’({27™}) =) 2 —

a;

a [L,Qbs _ :Efll 2
with Vi P(a%"%) o exp & o |
207

- INAPROPRIATE in most cosmological contexts: should
compute ratio:

.obs _ sth )2

f£>£ ch (D]M(6;))
i 1DL (D|M (6,)) (relies on likelihood tails)
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Frequentist approach

+ Confidence limits: frequentist's rule of
thumbs:

- Confidence limit for 6, = range in which at least one model is
found with %2- 2.« 1 (68%CL), <4 (95%CL), etc.

- Based on assumption that £ (D|A1(6;)) is a multivariate gaussian
w.r.t. {6;} (Fisher matrix approximation)

ol
=P

- Should compute Ay? such that:

| ome o 2 d0:L (DIM(6:))
[do:L (DM (6,))

= C.L.
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Bayesian approach

+ Existence of a space of possible models
with a measure of probability

- "invert the likelihood" to get probability of
model given the data:

P(A&B) =P(A)P(B|A) = P(B)P(A|B)

d

pslA) — PB) PAIB)

P(A)
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Bayesian approach

+ Existence of a space of possible models
with a measure of probabilit

- Bayes 'I'heor'emZ likelihood prior probability
|

£ (DIM{6:})) TI({6,})

OitIM,D) = ,

posterior probability eviLence
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Bayesian approach

+ Existence of a space of possible models
with a measure of probabilit

- Bayes 'I'heor'emZ likelihood prior probability
!

£ (DIM{6:})) TI({6:})

P({0:}|M, D) = ,
P({0:}1M.D) BT

posterior probability eviLence

* normalization implies :
P(D|M) = / Vo, £(D|M({6;})) TI({6;})= goodness-of-fit
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Bayesian approach

* The evidence:
- Quantitative implementation of Occam'’s razor

- very useful for model comparision:
o ' 1 s U T T B In(P(A)/P(B))

odds: 3:1 12:1 150:1

inconclusive weak ev. moderate evidence strong ev.

- Computation of P(A) involved ...

(thermodynamical integration, see Beltran, Slosar, Garcia-Bellido, JL, Liddle 05;
see also NULTINEST approach of Feroz, Hobson, Bridges 08)

[
>

- ... but In(P(A)/P(B)) is not if models are nested:
if A = sub-case of B with 8,=q,

P(A)/P(B) = Py(6,=a|B,D) / My(6,=a)
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Bayesian approach

- The evidence:

- to be compared with approximate estimators
for model selection:
* N = # data points, k = # free parameters

+ x2 . =-2InL Tables e.g. in
K min me WMAP papers

A(AIC) = Ax? i+ 2 AK (Akaike: frequentist)

A(BIC) = A% in* 2 A(k InN) (approximation to

Bayesian evidence)
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Bayesian approach

* Marginalization and C. L.:

V1 PI(HI‘A[D> Z/dN_l@j;,gj, P({HJ}’A[D)

_—ﬂ ‘ch limit 1

e

/~_17] S mean value :/ df; 6;P;(0;|M, D)
best-fit value
7c/onfidence limit 2
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Bayesian approach

» C.L. definition not unique:

P P,
687%
3 N R g
| >0, >0,
16% 16% total 32%
COSMOMC (Getdist.fo0) modified Getdist.fo0 of
Lewis & Bridle Hamann, Hannestad, Raffelt, Wong 2007
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Bayesian approach

* Why particle-physics-frequentist-formated people are
often perplex:

- C.L.s are prior-dependent (as well as means, evidence, ...), unless
parameter strongly constrained by data

L, L xm
N/ .

<> 0, "9,
<« any reasonnable prior range

Prior ambiguity for all "un-necessary parameters": tensors, isocurvature
fraction, neutrino mass, extra rel. d.o.f., etc..
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Bayesian approach

* Why particle-physics-frequentist-formated people are

often perplex:
- C.L.s are prior-dependent (as well as means, evidence, ...), unless

parameter strongly constrained by data

Example of adiadabatic + CDM isocurvature model :

Flat prior on
“isocurvature fraction in C,,
Cross-correlation fraction in C|" ?
or
“isocurvature-to-adiabatic amplitude
ratio, cosine of correlation angle” ? ,

2B o (1-a)'"?

Beltran, Gar'cia-Bellidics;, JL, Viel 05
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Bayesian approach

* Why particle-physics-frequentist-formated people are
often perplex:

- C.L.s are prior-dependent (as well as means, evidence, ...), unless
parameter strongly constrained by data

Example of adiadabatic + CDM isocurvature model :

Bayes factor In(P(A)/P(B)) changes by factor 2...

Beltran, Garcia-Bellido, JL, Liddle, Slosar 05; Trotta 05
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Bayesian approach

* Why particle-physics-frequentist-formated people are

often perplex:

- C.L.s are prior-dependent (as well as means, evidence, ...), unless
parameter strongly constrained by data

Example of H, non-zero, prior-dependent mean e
infl T L7 _
when take flat priors on (A,r,n), or on HSR VRN
parameters, or directly on H;¢, or In[H;] ! S =
/ - \
.. while likelihood peaks in r=H;,¢=0 ! - "\
0 0:5 1 1.5
ot/ Mp x10°°

Consequence of likelihood being strongly non-gaussian w.r.t. un-necessary

parameter Hamann, Krauss, Valkenburg 08
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Bayesian approach

* Why particle-physics-frequentist-formated people are
often perplex:
- C.L.s are prior-dependent (as well as means, evidence, ...), unless
parameter strongly constrained by data
- Everything can happen:
- Posterior probability of best-fit can be poor
» Likelihood of model built from means {6,} can be low

»+ Adding MORE data can make the bounds WEAKER (if datasets disagree)
+ Adding EXTRA free parameters can make bounds STRONGER

— MA\x;
TN
7 S
-2 N
2

-1
910 1
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Comparision

If L(D|M(6;)) multi-variate gaussian function of {0.}:
Frequentist best-fits, CL's —— Bayesian means, C.L.'s

- Belief that "data improving, parameters better constrained, debate on
statistics will close”...

- NO! The "frontier” will move but there will always be a frontier...

Example of papers comparing two approaches with same models/datasefts:
 Reid, Verde, Jimenez, Mena 0910.0008
* Boyarsky, JL, Ruchayskiy, Viel 0812.0010
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Comparision

If L(D|M(6;)) multi-variate gaussian function of {0.}:
Frequentist best-fits, CL's —— Bayesian means, C.L.'s

Belief that "data improving, parameters better constrained, debate on
statistics will close”...

NO! The "frontier” will move but there will always be a frontier...

Bayesian supporters say future will be Bayesian because it is a better
defined framework

.. or because it is computationally much more tractable ...
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Monte Carlo methods

Old (<« 2003) approach to parameter extraction:
- Sample power spectra OR likelihood in a grid in parameter space

- Use marginalization (Bayesian) or maximization (frequentist)
algorithms

- N params: typically 10N evaluations (weeks...)
* (plus, if frequentist: interpolation problems + 10xN maximizations)

CosmoMC (Lewis & Bridle 2002): Monte Carlo Markhov Chains
(MCMC) with Metropolis-Hastings algorithm, evaluations « N
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Monte Carlo methods

Old (<« 2003) approach to parameter extraction:
- Sample power spectra OR likelihood in a grid in parameter space

- Use marginalization (Bayesian) or maximization (frequentist)
algorithms

- N params: typically 10N evaluations (weeks...)
* (plus, if frequentist: interpolation problems + 10xN maximizations)

CosmoMC (Lewis & Bridle 2002): Monte Carlo Markhov Chains
(MCMC) with Metropolis-Hastings algorithm, evaluations « N

Other methods: nested sampling, importance sampling, ..
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Monte Carlo Makhov Chains

Principle:

i 1
!

5o

'62

- Each possible next point is chosen randomly;
- L(D|M({6;})) 11({0;})is evaluated at this possible new point;

- choice to go there or not is governed by a probability dictated by
the "Metropolis-Hastings" algorithm:

lim n({0;}) « L(D|MH0;})) x 11({0:})

;?\" — X0
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Monte Carlo Makhov Chains

1,
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Monte Carlo Makhov Chains

0y,

——> histogram

1

- H

smoothing=—>

—>

16/09/2010

> 92
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Monte Carlo Makhov Chains

- Convergence issue:

- Several possible convergence tests, CosmoMC comes with
many of them:
- Ex: for each basis vector in param space,

R-1= (variance of chain means / mean of chain variances - 1) :
proves that chains (or chain subsamples) agree with each other,
but does not mean that they have converge

- Known problem for bimodal distribution...

- ... but even nicely behaved distribution can be tricky (if a
parameter has non-gaussian probability or participates to a
degeneracy)
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Monte Carlo methods

* Nested sampling :

16/09/2010
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Monte Carlo methods

* Nested sampling :

0y,
°
° o .o
° ® o o
ol P% e o
o ——eologe o 0
o 2
0g®0 o
% o ©
of O
o O o
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Monte Carlo methods

* Nested sampling :

04,
®
° o o ®
oo % %°
o, %% o o
® o oge—o 0
o 2
0e®0 o
° o «® °
of o
® O o
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Monte Carlo methods

* Nested sampling :
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Monte Carlo methods

* Nested sampling : « At each step, enveloppe of remaining
point = estimate of isolikelihood contour
with Z=£(last point eliminated)

« Collection of many isolikelihoods:
knowledge of £, and hence of evidence
and posteriors

* Various algorithms for finding new
points; some of them adapted to the
case of multimodal likelihoods or

banana-shaped denegeracies (MULINEST
by Feroz, Hobson, Bridges, 08 )

* Less easy to parallelize than MCMC, but
more efficient when curving
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Summary of robustness of

confidence limits

+ When quoting/making use of C.L., beware of:

- Uncertainties related to data:
- Systematic errors
- Approximations to true likelihood

- Ambiguities related to methodology:
* Priors, underlying model

- Uncertainties in parameter extraction method:
- MCMC convergence
* Chains binning

* ... CL. on "non-necessary parameters” should only be
regarded as rough estimates... in that case comparing
Bayesian/frequentist is healthy!
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Parameter forecasts

* Fisher matrix analysis : F;;= [d2Ing/d6,d6; ],
- Assume instrument sensitivity
- Assume best-fit (fiducial) model
- Approximate likelihood as gaussian wrt 6, around best-fit
+ Compute dC,/db; |, and infer F;
+ Infer A6, from simple algebra (inversion of F;)

- Problem 1: gaussian approximation can fail significantly
(curving degeneracies, hard bounds)

- Problem 2: unless C, = linear function of 6., numerical
estimate of dC,/d6; depends on step-size
Hu, Eisenstein & Tegmark 98

* mock data + full MCMC parameter extraction
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Parameter forecasts

ex: forecast for Planck with lensing extraction
(Perotto, JL, Tu, Hannestad, Wong 2006)

5
3.24
4.5
3.22 4
LOQ[A] 3.2 Neff 3.5
3
3.18
25
3.16
0.94 0.96 0.98 1 0.05 0.1 0.15
g m,

Forecast for DE sound speed varying in range [0:1]
(Ballesteros & JL 2010)
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