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Plan 
•  What will not be discuss 
•  The likelihood function L 

•  Which bad treatments do frequentist 
adepts impose to L ? 

•  What do Bayesian illusionists cook up out 
of L ? 

•  Monte Carlo likelihood sampling methods 
•  Parameter forecasts 
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Statistics are dangerous 

•  Can provide silly answers to consistent 
questions  

•  Can provide (appearently) consistent 
answers to silly questions 

P(θ) 
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Loosely-defined questions 

•  “why does the large-scale universe looks 
like it looks like?” 
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Loosely-defined questions 
•  Identify a strange property of  
    the data 
•  Compute many realizations of given  
    theory, and find that only ε% of them have  
    this strange property… conclude that theory is wrong… 

•  Mathematically dangerous because need to trust absolute 
likelihood, even in tails 

•  Conceptually dangerous because “strangeness” cannot be 
quantified. If theory correct, probability that “such a strange 
thing can happen” should be significant, but probability that “this 
strange thing happens” can be small. 

discussion in Hamann, Shafieloo & Souradeep 2009 
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Loosely-defined questions 
•  Claims based on anthropic arguments combined with some 

probability calculation… 

•  E.g.: if ρΛ1/4 > [a few] x 10-3eV, no star formation, no life ! 

            so ρΛ1/4 in the range from 0 to few 10-3eV … and the fact 
that we measure a value as large as ~10-3eV has a probability of 
order one. 

•  Assumes all values of ρΛ1/4 a priori equiprobable: “flat prior on 
ρΛ1/4”. Why not on on ρΛ? Or on ln[ρΛ]?  

•  Answer depends entirely on prior, which we cannot decide. 

•  Will not face this questions… only interested in parameter 
inference, eventually in model selection … 
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The likelihood function 
•  Question: 

–  “ If one assumes a theoretical model and 
some instrumental characteristics, what is 
the probability of a given data set? “ 

Likelihood function: 
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The likelihood function 
•  Function of                        depending on: 

–  experimental noise 
–  theoretical predictions: 

•  deterministic theory:  set of numbers 

•  stochastic theory: probability distribution  
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The likelihood function 
•  Ex: Gaussian theory and noise: 

–  Independent points: 
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The likelihood function 
•  Ex: Gaussian theory and noise: 

–  Correlated measurements: 

                                 data covariance matrix 

(frequently, measurement in various bins are correlated 
by instrument, data processing, binning) 
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The likelihood function 
•  Ex: Gaussian theory and noise: 

–  Correlated measurements: 

(frequently, measurement in various bins are correlated 
by instrument, data processing, binning) 

Correlated                                        Decorrelated      
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The likelihood function 
•  Ex: CMB temperature, gaussian 

fluctuations, ideal experiment: 

                                             for each pixel,  

⇓ 

⇓ 
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The likelihood function 
•  Ex: CMB temperature, gaussian 

fluctuations, ideal experiment: 

                                             for each pixel,  

⇓ 

⇓ 

gaussian, variance  gaussian, uncorrelated, variance 
given by exp. sensitivity and resolution  
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The likelihood function 
•  Ex: CMB temperature, gaussian 

fluctuations, ideal experiment: 

                                             for each pixel,  

⇓ 
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The likelihood function 
•  Ex: CMB temperature, gaussian 

fluctuations, real experiment: 
•  alm ’s are correlated by sky cut 

•  noise is not isotropic 
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The likelihood function 
•  Ex: CMB temperature, gaussian 

fluctuations, real experiment: 
• Many other effects inducing correlations/

distorsions: 
–  instrument (beam shape, calibration, baseline drift…) 
–  data processing (time-ordered data ⇒ map ⇒ alm, Cl ) 
–  Foreground removal (point-like sources, etc.) 

•  when possible, analytical modelling           (complicated) 

•  otherwise, Monte Carlo reconstruction      likelihood 
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The likelihood function 
•  Ex: CMB temperature, gaussian 

fluctuations, real experiment: 
•  Final likelihood = approximation  
   (precision vs. computability) 

                        large l’s : correlated gaussian Cl’s 
For WMAP7             (non-trivial analytical approx. to cov. mat.) 
                        small l’s : improved each time 
                                (since WMAP3: correlated gaussian pixels) 
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The likelihood function 
•  Summary and message: 

–  For CMB & LSS data, likelihood is: 
•  Non-gaussian, involving correlations 
•  Difficult to estimate 
•  Always approximate 

•  Should be use with great care and not “over-intepreted” or 
“over-trusted”… 
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Frequentist approach 
•                           = only relevant quantity, 

everything derives from it 

   “given a model and over many possible 
observations, probability that nature 
choose a particular parameter set {θi} 

proportional to L ” 
(seen now as a function of θi’s) 
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Frequentist approach 
–  Based on intuition, not on theorems 

– Maximum of                      gives goodness-
of-fit of model and best-fit parameters 

–  For each θi, range in which  
                              > threshold  
 = allowed range at given confidence level 
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Frequentist approach 
•  Goodness-of-fit: frequentist’s rule of thumbs: 

–  Given n = # of data points, m = # of params, 
  Q(χ2|n-m) = 1 - cumulative distr. func. of χ2

(n-m) 

                       = probability of obtaining a better fit 

-  Assumes that  

-  INAPROPRIATE in most cosmological contexts: should 
compute ratio:  

                                                           (relies on likelihood tails) 
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Frequentist approach 
•  Confidence limits: frequentist’s rule of 

thumbs: 
–  Confidence limit for θi = range in which at least one model is 

found with χ2- χ2
min< 1 (68%CL),   < 4 (95%CL),  etc. 

–  Based on assumption that                 is a multivariate gaussian 
w.r.t. {θi} (Fisher matrix approximation) 

–  Should compute Δχ2 such that: < 
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Bayesian approach 
•  Existence of a space of possible models 

with a measure of probability 
–  “invert the likelihood” to get probability of 

model given the data: 
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Bayesian approach 
•  Existence of a space of possible models 

with a measure of probability 
–  Bayes theorem: likelihood              prior probability 

evidence posterior probability 
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Bayesian approach 
•  Existence of a space of possible models 

with a measure of probability 
–  Bayes theorem: 

•  normalization implies : 
                                                    = goodness-of-fit 

likelihood              prior probability 

evidence posterior probability 
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Bayesian approach 
•  The evidence: 

–  Quantitative implementation of Occam’s razor 
–  very useful for model comparision: 

–  Computation of P(A) involved …  
(thermodynamical integration, see Beltran, Slosar, Garcia-Bellido, JL, Liddle 05; 

see also NULTINEST approach of Feroz, Hobson, Bridges 08) 

–  … but ln(P(A)/P(B)) is not if models are nested: 
          if A = sub-case of B with θ1=a,               
        P(A)/P(B) = PB(θ1=a|B,D) / ΠB(θ1=a) 

0                 1                         2.5                                             5       |ln(P(A)/P(B))| 

odds:                   3:1                       12:1                                         150:1 
inconclusive        weak ev.                  moderate evidence                strong ev. 



16/09/2010 Julien Lesgourgues (CERN & EPFL) 27 

Bayesian approach 
•  The evidence: 

–  to be compared with approximate estimators 
for model selection: 
•   N = # data points,   k = # free parameters 
•   χ2

min=-2 ln Lmax 

Δ(AIC) = Δ χ2
min + 2 Δ k                       (Akaike: frequentist) 

Δ(BIC) = Δ χ2
min + 2 Δ (k ln N)             (approximation to 

                                                                                 Bayesian evidence) 

Tables e.g. in 
WMAP papers 
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Bayesian approach 
•  Marginalization and C. L.: 

best-fit value  

confidence limit 1  

confidence limit 2  

θ1 θ1 

θ2 

mean value =  
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Bayesian approach 
•  C.L. definition not unique: 

COSMOMC (Getdist.f90)                   modified Getdist.f90 of  
Lewis & Bridle                           Hamann, Hannestad, Raffelt, Wong 2007 

θ1 

P 

θ1 

P 

16% 16% total 32% 

68% 68% 
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Bayesian approach 
•  Why particle-physics-frequentist-formated people are 

often perplex: 
–  C.L.’s are prior-dependent (as well as means, evidence, …), unless 

parameter strongly constrained by data 

Prior ambiguity for all “un-necessary parameters”: tensors, isocurvature 
fraction, neutrino mass, extra rel. d.o.f., etc… 

θ1 
θ1 

L , Π
 L x Π


<< any reasonnable prior range 
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Bayesian approach 
•  Why particle-physics-frequentist-formated people are 

often perplex: 
–  C.L.’s are prior-dependent (as well as means, evidence, …), unless 

parameter strongly constrained by data 

Example of adiadabatic + CDM isocurvature model : 

Flat prior on 
“isocurvature fraction in Cl, 

Cross-correlation fraction in Cl” ? 
or 

“isocurvature-to-adiabatic amplitude  
ratio, cosine of correlation angle” ?  

Beltran, Garcia-Bellido, JL, Viel 05 
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Bayesian approach 
•  Why particle-physics-frequentist-formated people are 

often perplex: 
–  C.L.’s are prior-dependent (as well as means, evidence, …), unless 

parameter strongly constrained by data 

Bayes factor ln(P(A)/P(B)) changes by factor 2… 

Beltran, Garcia-Bellido, JL, Liddle, Slosar 05; Trotta 05 

Example of adiadabatic + CDM isocurvature model : 
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Bayesian approach 
•  Why particle-physics-frequentist-formated people are 

often perplex: 
–  C.L.’s are prior-dependent (as well as means, evidence, …), unless 

parameter strongly constrained by data 

Hamann, Krauss, Valkenburg 08 

Example of Hinfl non-zero, prior-dependent mean  
when take flat priors on (A,r,n), or on HSR  
parameters, or directly on Hinfl, or  ln[Hinfl]  !!! 

… while  likelihood peaks in r=Hinf=0 ! 

Consequence of likelihood being strongly non-gaussian w.r.t. un-necessary 
parameter  
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Bayesian approach 
•  Why particle-physics-frequentist-formated people are 

often perplex: 
–  C.L.’s are prior-dependent (as well as means, evidence, …), unless 

parameter strongly constrained by data 
–  Everything can happen: 

•  Posterior probability of best-fit can be poor 
•  Likelihood of model built from means {θi} can be low 
•  Adding MORE data can make the bounds WEAKER (if datasets disagree) 
•  Adding EXTRA free parameters can make bounds STRONGER 



16/09/2010 Julien Lesgourgues (CERN & EPFL) 35 

Comparision 
•  If                                         multi-variate gaussian function of {θi}: 
        Frequentist best-fits, C.L.’s             Bayesian means, C.L.’s 

–  Belief that “data improving, parameters better constrained, debate on 
statistics will close”… 

–  NO!  The “frontier” will move but there will always be a frontier… 

–  pope                                       Future will be Bayesian because it is a 
    Baesianus Primus:                   more correct, more powerful framework 

–  … or because it is computationally much more tractable … 

Example of papers comparing two approaches with same models/datasets: 
•  Reid, Verde, Jimenez, Mena 0910.0008 
•  Boyarsky, JL, Ruchayskiy, Viel 0812.0010 
•  … 
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Comparision 
•  If                                         multi-variate gaussian function of {θi}: 
        Frequentist best-fits, C.L.’s             Bayesian means, C.L.’s 

–  Belief that “data improving, parameters better constrained, debate on 
statistics will close”… 

–  NO!  The “frontier” will move but there will always be a frontier… 

–  Bayesian supporters say future will be Bayesian because it is a better 
defined framework 

–  … or because it is computationally much more tractable … 
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Monte Carlo methods 
•  Old (< 2003) approach to parameter extraction: 

–  Sample power spectra OR likelihood in a grid in parameter space 
–  Use marginalization (Bayesian) or maximization (frequentist) 

algorithms 
–  N params: typically 10N evaluations (weeks…) 

•  (plus, if frequentist: interpolation problems + 10xN maximizations)  

•  CosmoMC (Lewis & Bridle 2002): Monte Carlo Markhov Chains 
(MCMC) with Metropolis-Hastings algorithm, evaluations ∝ N 
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Monte Carlo methods 
•  Old (< 2003) approach to parameter extraction: 

–  Sample power spectra OR likelihood in a grid in parameter space 
–  Use marginalization (Bayesian) or maximization (frequentist) 

algorithms 
–  N params: typically 10N evaluations (weeks…) 

•  (plus, if frequentist: interpolation problems + 10xN maximizations)  

•  CosmoMC (Lewis & Bridle 2002): Monte Carlo Markhov Chains 
(MCMC) with Metropolis-Hastings algorithm, evaluations ∝ N 

•  Other methods: nested sampling, importance sampling, … 
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Monte Carlo Makhov Chains 

–  Each possible next point is chosen randomly;  
–                                           is evaluated at this possible new point;  
–  choice to go there or not is governed by a probability dictated by 

the “Metropolis-Hastings” algorithm: 

θ1 

θ2 

Principle: 

∝ 
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Monte Carlo Makhov Chains 
θ1 

θ2 
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Monte Carlo Makhov Chains 
θ1 

θ2 

θ1 

θ2 

histogram 

smoothing 

P P 

θ2 θ2 
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Monte Carlo Makhov Chains 
•  Convergence issue: 

–  Several possible convergence tests, CosmoMC comes with 
many of them: 

•  Ex: for each basis vector in param space,  
    R-1= (variance of chain means / mean of chain variances – 1) : 

proves that chains (or chain subsamples) agree with each other, 
but does not mean that they have converge 

–  Known problem for bimodal distribution… 
–  … but even nicely behaved distribution can be tricky (if a 

parameter has non-gaussian probability or participates to a 
degeneracy) 
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Monte Carlo methods 
•  Nested sampling : 

θ1 

θ2 

θ1 

θ2 
vs 
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Monte Carlo methods 
•  Nested sampling : 

θ1 

θ2 
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Monte Carlo methods 
•  Nested sampling : 

θ1 

θ2 
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Monte Carlo methods 
•  Nested sampling : 

θ1 

θ2 
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Monte Carlo methods 
•  Nested sampling : 

θ1 

θ2 

•  At each step, enveloppe of remaining 
point = estimate of isolikelihood contour 
with L=L(last point eliminated) 

•  Collection of many isolikelihoods: 
knowledge of L, and hence of evidence 
and posteriors 

•  Various algorithms for finding new 
points; some of them adapted to the 
case of multimodal likelihoods or 
banana-shaped denegeracies (MULINEST 
by  Feroz, Hobson, Bridges, 08 ) 

•  Less easy to parallelize than MCMC, but 
more efficient when curving 
denegeracies 
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Summary of robustness of 
confidence limits 

•  When quoting/making use of C.L., beware of: 
–  Uncertainties related to data: 

•  Systematic errors 
•  Approximations to true likelihood 

–  Ambiguities related to methodology: 
•  Priors, underlying model 

–  Uncertainties in parameter extraction method: 
•  MCMC convergence 
•  Chains binning 

•  … C.L. on “non-necessary parameters” should only be 
regarded as rough estimates… in that case comparing 
Bayesian/frequentist is healthy!! 
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Parameter forecasts 
•  Fisher matrix analysis : Fij= [d2lnL/dθidθj]max 

•  Assume instrument sensitivity 
•  Assume best-fit (fiducial) model 
•  Approximate likelihood as gaussian wrt θi around best-fit 
•  Compute dCl/dθi |max  and infer Fij  
•  Infer Δθi from simple algebra (inversion of Fij) 

–  Problem 1: gaussian approximation can fail significantly 
(curving degeneracies, hard bounds) 

–  Problem 2: unless Cl = linear function of θi, numerical 
estimate of dCl/dθi depends on step-size 

Hu, Eisenstein & Tegmark 98 

•  mock data + full MCMC parameter extraction 
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Parameter forecasts 

ns mv 

Neff Log[A] 

•  ex: forecast for Planck with lensing extraction               
(Perotto, JL, Tu, Hannestad, Wong 2006) 

•  Forecast for DE sound speed varying in range [0:1]  
     (Ballesteros & JL 2010) 
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