Confronting Void Models with the CMB

Seshadri Nadathur

UniverseNet 2010

Supervisor: Subir Sarkar

Outline

Motivation

Why large-scale voids? Using voids to fit SNIa

Confronting voids with the CMB

Equivalent EdS approach Voids ruled out?

Multiple Inflation

Basics Bump model Bump + void vs. data

Summary

Why large-scale voids?

- We need to explain apparent acceleration seen in SNIa data
- ACDM explains acceleration, but generates cosmic coincidence problem - vacuum energy density is 120 orders of magnitude less than "natural" value, and yet not zero
- Local underdensity can explain SNIa data without dark energy -
 - $\circ~\Omega_m < 1$ inside the void, but = 1 outside
 - $\circ~$ local Hubble rate is high, global rate is low
 - $\circ~$ distant supernovae appear dimmer than expected
- Simplest models use a single spherically symmetric void with a Lemaitre-Tolman-Bondi metric

How do voids work?

- LTB metric: $ds^2 = -c^2 dt^2 + \frac{A'^2(r,t)}{1+K(r)} dr^2 + A^2(r,t) d\Omega^2$
- Two Hubble rates: $H_T(r,t) \equiv \frac{\dot{A}}{A}$ and $H_L(r,t) \equiv \frac{\dot{A}'}{A'}$
- Obtain modified version of Friedmann equation -

$$H_T^2(r,t) = H_0^2(r) \left[\Omega_m(r) \left(\frac{A_0(r)}{A(r,t)} \right)^3 + \Omega_K(r) \left(\frac{A_0(r)}{A(r,t)} \right)^2 \right]$$

- Void profile specified by $\Omega_m(r)$ (or, equivalently, K(r))
- For growing modes, bang time is homogeneous and so Ω_m is the only free function

How do voids work?

Choose a density profile

- Solve modified Friedmann equation numerically for A(r,t)
- Luminosity distance $D_L(z) = (1+z)^2 A(r,t)$

Hubble expansion rates

• Can get a very good fit to supernovae data:

• An off-centre observer will see a dipole due to the void - therefore already constrained to be within 1% of the radius scale from the centre

- An off-centre observer will see a dipole due to the void therefore already constrained to be within 1% of the radius scale from the centre
 - violation of Copernican principle?
 - \circ fine-tuning?

- An off-centre observer will see a dipole due to the void therefore already constrained to be within 1% of the radius scale from the centre
 - violation of Copernican principle?
 - \circ fine-tuning?
- ... but moving on ...

- An off-centre observer will see a dipole due to the void therefore already constrained to be within 1% of the radius scale from the centre
 - o violation of Copernican principle?
 - fine-tuning?
- ... but moving on ...
- Cannot (yet?) do perturbation theory in LTB metric, so cannot directly calculate CMB spectrum
- ... therefore we use equivalent EdS approach as a calculational tool to obtain power spectrum

- Key observation: at large z, LTB void is asymptotically FRW, with $\Omega_m=1$

- Key observation: at large z, LTB void is asymptotically FRW, with $\Omega_m=1$
- Construct an EdS universe with *same physics* as void model (i.e. same Hubble rate, temperature, η , P(k) etc.) at *early times* (say $z \sim 100$), and same angular diameter distance to LSS

- Key observation: at large z, LTB void is asymptotically FRW, with $\Omega_m=1$
- Construct an EdS universe with same physics as void model (i.e. same Hubble rate, temperature, η , P(k) etc.) at early times (say $z \sim 100$), and same angular diameter distance to LSS
- This EdS universe will have the same angular power spectrum as LTB model *at small scales*
- Can calculate the power spectrum for the EdS universe using CAMB

- Key observation: at large z, LTB void is asymptotically FRW, with $\Omega_m=1$
- Construct an EdS universe with same physics as void model (i.e. same Hubble rate, temperature, η , P(k) etc.) at early times (say $z \sim 100$), and same angular diameter distance to LSS
- This EdS universe will have the same angular power spectrum as LTB model *at small scales*
- Can calculate the power spectrum for the EdS universe using CAMB
- Note: as the equivalent EdS universe matches at early times, it will differ at late times. In particular, $H_0^{EdS} \neq H_0^{LTB}$ and $T_0^{EdS} \neq T_0^{LTB}$
- Calculate H_0^{EdS} and T_0^{EdS} as inputs to CAMB

- Moss, Zibin and Scott (arXiv:1007.3725): NO
 - $\circ~$ To get comparable χ^2 , ${\it H}_0 = 44 \pm 2 {\rm km~s}^{-1} {\rm Mpc}^{-1}$
 - $\circ \ \text{age} \simeq 19 \text{Gyr}$

• Moss, Zibin and Scott (arXiv:1007.3725): NO

• To get comparable χ^2 , $H_0 = 44 \pm 2$ km s⁻¹Mpc⁻¹ • age $\simeq 19$ Gyr

- Biswas, Notari and Valkenburg (arXiv:1007.3065): Not very well, and only with non-zero overall curvature (i.e. $\Omega_m \neq 1$ outside the void)
 - $\circ~\Delta\chi^2$ still ~ 15
 - $\circ~$ local value of H_0 still low
 - aesthetically unappealing?

• Moss, Zibin and Scott (arXiv:1007.3725): NO

 \circ To get comparable χ^2 , $H_0 = 44 \pm 2$ km s⁻¹Mpc⁻¹ \circ age \simeq 19Gyr

- Biswas, Notari and Valkenburg (arXiv:1007.3065): Not very well, and only with non-zero overall curvature (i.e. $\Omega_m \neq 1$ outside the void)
 - $\circ~\Delta\chi^2$ still ~ 15
 - $\circ~$ local value of H_0 still low
 - aesthetically unappealing?
- Both groups assume power-law primordial *P*(*k*) from standard cosmological model

• Moss, Zibin and Scott (arXiv:1007.3725): NO

 \circ To get comparable χ^2 , $H_0 = 44 \pm 2$ km s⁻¹Mpc⁻¹ \circ age \simeq 19Gyr

- Biswas, Notari and Valkenburg (arXiv:1007.3065): Not very well, and only with non-zero overall curvature (i.e. $\Omega_m \neq 1$ outside the void)
 - $\circ~\Delta\chi^2$ still ~ 15
 - $\circ~$ local value of H_0 still low
 - aesthetically unappealing?
- Both groups assume power-law primordial *P*(*k*) from standard cosmological model
- What if there are features in the primordial power?

- First proposed by Adams, Ross and Sarkar (hep-ph/9704286)
 - Subsequently explored by Hunt and Sarkar (astro-ph/0408138) and (arXiv:0706.2443), and Hotchkiss and Sarkar (arXiv:0910.3373)

- First proposed by Adams, Ross and Sarkar (hep-ph/9704286)
 - Subsequently explored by Hunt and Sarkar (astro-ph/0408138) and (arXiv:0706.2443), and Hotchkiss and Sarkar (arXiv:0910.3373)
- Theory embedded in a SUSY-breaking framework
- Inflaton gravitationally coupled to flat-direction fields

$$V(\phi,\psi) = V_0 - \frac{1}{2}m^2H^2\phi^2 + \frac{1}{2}\lambda H^2\phi^2\psi^2 - \frac{1}{2}\mu^2H^2\psi^2 + \gamma\psi^n$$

- First proposed by Adams, Ross and Sarkar (hep-ph/9704286)
 Subsequently explored by Hunt and Sarkar (astro-ph/0408138) and
 - Subsequently explored by Hunt and Sarkar (astro-ph/0408138) and (arXiv:0706.2443), and Hotchkiss and Sarkar (arXiv:0910.3373)
- Theory embedded in a SUSY-breaking framework
- Inflaton gravitationally coupled to flat-direction fields

$$V(\phi,\psi) = V_0 - \frac{1}{2}m^2H^2\phi^2 + \frac{1}{2}\lambda H^2\phi^2\psi^2 - \frac{1}{2}\mu^2H^2\psi^2 + \gamma\psi^n$$

• Inflaton effective mass changes

- First proposed by Adams, Ross and Sarkar (hep-ph/9704286)
 Subsequently explored by Hunt and Sarkar (astro-ph/0408138) and
 - (arXiv:0706.2443), and Hotchkiss and Sarkar (arXiv:0910.3373)
- Theory embedded in a SUSY-breaking framework
- Inflaton gravitationally coupled to flat-direction fields

$$V(\phi,\psi) = V_0 - \frac{1}{2}m^2H^2\phi^2 + \frac{1}{2}\lambda H^2\phi^2\psi^2 - \frac{1}{2}\mu^2H^2\psi^2 + \gamma\psi^n$$

- Inflaton effective mass changes
- Fields with n =4, 6, 8, 10, 12, 16 exist in MSSM (Gerghetta et al, hep-ph/9510370)
- *n* = 16 and *n* = 12 are most important

Bump model

- Take two flat-direction fields, with *n* = 16 and *n* = 12, but with opposite couplings
- Fix most parameters at their natural values: $\mu_{16/12}^2=$ 3, $\lambda_{12}=$ 1, and allow only λ_{16} to vary
- Total 4 free parameters: H, λ₁₆, k₁₆ and k₁₂ (positions of transitions in k-space)
- (Like all models, must have $m^2 \ll 1$)

Bump model

- Take two flat-direction fields, with *n* = 16 and *n* = 12, but with opposite couplings
- Fix most parameters at their natural values: $\mu_{16/12}^2 =$ 3, $\lambda_{12} =$ 1, and allow only λ_{16} to vary
- Total 4 free parameters: H, λ₁₆, k₁₆ and k₁₂ (positions of transitions in k-space)
- (Like all models, must have $m^2 \ll 1$)
- Obtain primordial P(k) with a "bump" feature and step down in power

- Combine bump model with simple Gaussian profile underdensity, with $\Omega_m \to 1$ outside the void
- We use following data sets:

- Combine bump model with simple Gaussian profile underdensity, with $\Omega_m \to 1$ outside the void
- We use following data sets:
 - SNIa: "Constitution" data set (Hicken et al, arXiv:0901.4804)

- Combine bump model with simple Gaussian profile underdensity, with $\Omega_m \to 1$ outside the void
- We use following data sets:
 - SNIa: "Constitution" data set (Hicken et al, arXiv:0901.4804)
 - $\circ~$ CMB: WMAP7 TT and TE data for $\mathit{I} > 32$

- Combine bump model with simple Gaussian profile underdensity, with $\Omega_m \to 1$ outside the void
- We use following data sets:
 - SNIa: "Constitution" data set (Hicken et al, arXiv:0901.4804)
 - $\circ~$ CMB: WMAP7 TT and TE data for $\mathit{I} > 32$
 - HKP value $H_0 = 72 \pm 8$ km s⁻¹Mpc⁻¹ (Freedman et al, astro-ph/0012376) HST_{72±8}

- Combine bump model with simple Gaussian profile underdensity, with $\Omega_m \to 1$ outside the void
- We use following data sets:
 - SNIa: "Constitution" data set (Hicken et al, arXiv:0901.4804)
 - $\circ~$ CMB: WMAP7 TT and TE data for $\mathit{I} > 32$
 - HKP value $H_0 = 72 \pm 8$ km s⁻¹Mpc⁻¹ (Freedman et al, astro-ph/0012376) HST_{72±8}
 - $H_0 = 74.3 \pm 3.2$ km s⁻¹ Mpc⁻¹ (Riess et al, arXiv:0905.0695) HST_{74±3}

- Combine bump model with simple Gaussian profile underdensity, with $\Omega_m \to 1$ outside the void
- We use following data sets:
 - SNIa: "Constitution" data set (Hicken et al, arXiv:0901.4804)
 - $\circ~$ CMB: WMAP7 TT and TE data for $\mathit{I} > 32$
 - HKP value $H_0 = 72 \pm 8$ km s⁻¹Mpc⁻¹ (Freedman et al, astro-ph/0012376) HST_{72±8}
 - $H_0 = 74.3 \pm 3.2 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (Riess et al, arXiv:0905.0695) HST_{74±3}
 - $H_0 = 62.3 \pm 6.3$ km s⁻¹Mpc⁻¹ (Tammann et al, arXiv:0806.3018) HST_{62±6}

- Combine bump model with simple Gaussian profile underdensity, with $\Omega_m \to 1$ outside the void
- We use following data sets:
 - SNIa: "Constitution" data set (Hicken et al, arXiv:0901.4804)
 - $\circ~$ CMB: WMAP7 TT and TE data for $\mathit{I} > 32$
 - HKP value $H_0 = 72 \pm 8$ km s⁻¹Mpc⁻¹ (Freedman et al, astro-ph/0012376) HST_{72±8}
 - $H_0 = 74.3 \pm 3.2$ km s⁻¹ Mpc⁻¹ (Riess et al, arXiv:0905.0695) HST_{74±3}
 - $H_0 = 62.3 \pm 6.3$ km s⁻¹Mpc⁻¹ (Tammann et al, arXiv:0806.3018) HST_{62±6}
- Can extend study in future to include constraints from BAO, $\eta_{\rm 10},$ $\sigma_{\rm 8}$ etc.

Datasets	#dof	$-\ln \mathcal{L}$	
		ΛCDM	Bump + void
СМВ	1936	2892.5	-0.2
CMB + SN	2333	3109.3	-1.7
$CMB + SN + HST_{62\pm 6}$	2334	3109.6	-1.7
$CMB + SN + HST_{72\pm 8}$	2334	3109.4	-0.4
$CMB + SN + HST_{74\pm3}$	2334	3110.8	+4.5

• Can match Λ CDM fit with reasonable H_0 , t_0 and $\Omega_{m_{in}}$

- Can match Λ CDM fit with reasonable H_0 , t_0 and $\Omega_{m_{in}}$
- Parameters in inflaton potential have "natural" values (with caveats)

Summary

- We use a Gaussian void profile to fit SNIa data *without cosmological constant*
- We use a physically well-motivated model of inflation to generate a feature in primordial power
- The model with void and feature successfully fits WMAP7 data as well
- Unlike previous studies, we find reasonable values of H_0 and age of universe as well