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Why large-scale voids? '[h

ysics.,

e \We need to explain apparent acceleration seen in SNIa data

e ACDM explains acceleration, but generates cosmic coincidence

problem - vacuum energy density is 120 orders of magnitude less
than "natural” value, and yet not zero

¢ Local underdensity can explain SNIla data without dark energy -
o Q. < 1 inside the void, but = 1 outside
o local Hubble rate is high, global rate is low
o distant supernovae appear dimmer than expected

e Simplest models use a single spherically symmetric void with a
Lemaitre-Tolman-Bondi metric
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How do voids work? Ih i

ysics.

e LTB metric: ds?> = —c?dt? + 1+f<(r§ dr? + A?(r, t)dQ2

Two Hubble rates: Hr(r,t) = 4 and Hy(r,t) = 4
Obtain modified version of Friedmann equation -

Ao(r) Ao(r)
%(e) (7 r)) ra) (303 ]
Void profile specified by Qn,(r) (or, equivalently, K(r))

For growing modes, bang time is homogeneous - and so €, is the
only free function

H(r,t) = Hg(r)
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How do voids work? hysics.
Choose a density profile Hubble expansion rates

3 "ém \

s gu
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e Can get a very good fit to

supernovae data:
e Solve modified Friedmann

. . [ ' Constitution SNia
equation numerically for A(r,t) .

—Void

e Luminosity distance
Di(z) = (1 + 2)%A(r, t)

n(@) -1 g (2)
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e An off-centre observer will see a dipole due to the void - therefore
already constrained to be within 1% of the radius scale from the
centre
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The CMB spectrum in a void .[hysics“

e An off-centre observer will see a dipole due to the void - therefore
already constrained to be within 1% of the radius scale from the
centre

o violation of Copernican principle?
o fine-tuning?

e ... but moving on ...

e Cannot (yet?) do perturbation theory in LTB metric, so cannot
directly calculate CMB spectrum

e ... therefore we use equivalent EdS approach as a calculational tool
to obtain power spectrum
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Equivalent Einstein-de Sitter approach Ihysics \‘

e Key observation: at large z, LTB void is asymptotically FRW, with
Qn=1
e Construct an EdS universe with same physics as void model (i.e.

same Hubble rate, temperature, 1, P(k) etc.) at early times (say
z ~ 100), and same angular diameter distance to LSS

e This EdS universe will have the same angular power spectrum as
LTB model at small scales

e Can calculate the power spectrum for the EdS universe using CAMB

e Note: as the equivalent EdS universe matches at early times, it will
differ at late times. In particular, HE? # HETE and TF9S # TLHTE

e Calculate Hé:_ds and TOEdS as inputs to CAMB
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e Moss, Zibin and Scott (arXiv:1007.3725): NO
o To get comparable y2, Hy = 44 + 2km s 'Mpc ™!
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Can voids fit the CMB?

e Moss, Zibin and Scott (arXiv:1007.3725): NO
o To get comparable x2, Hy = 44 + 2km s~ *Mpc™
o age ~ 19Gyr

e Biswas, Notari and Valkenburg (arXiv:1007.3065): Not very well,
and only with non-zero overall curvature (i.e. Q,, # 1 outside the

void)
o Ay2 still ~ 15
o local value of Hy still low
o aesthetically unappealing?
e Both groups assume power-law primordial P(k) from standard

1

cosmological model
e What if there are features in the primordial power?
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Multiple Inflation hysics..

e First proposed by Adams, Ross and Sarkar (hep-ph/9704286)
o Subsequently explored by Hunt and Sarkar (astro-ph/0408138) and
(arXiv:0706.2443), and Hotchkiss and Sarkar (arXiv:0910.3373)
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Multiple Inflation hysics..

e First proposed by Adams, Ross and Sarkar (hep-ph/9704286)
o Subsequently explored by Hunt and Sarkar (astro-ph/0408138) and
(arXiv:0706.2443), and Hotchkiss and Sarkar (arXiv:0910.3373)

e Theory embedded in a SUSY-breaking framework
e Inflaton gravitationally coupled to flat-direction fields

1 1 1 .
V(6,0) = Vo = 5mPH?¢? + SAH2G202 — 212 H20? +

2
V(o) V(v) FR_ua /‘ e |nflaton effective mass changes
- N/

v 16 exist in MSSM (Gerghetta et
al, hep-ph/9510370)

e n=16 and n =12 are most
important
9 of 14

| B / e Fields with n =4, 6, 8, 10, 12,



(Pxford
Bump model hysics..

e Take two flat-direction fields, with n = 16 and n = 12, but with
opposite couplings

e Fix most parameters at their natural values: ,u§6/12 =3, A2 =1,
and allow only \j6 to vary

o Total 4 free parameters: H, A16, ki and ki (positions of
transitions in k-space)

e (Like all models, must have m? < 1)
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e Take two flat-direction fields, with n = 16 and n = 12, but with
opposite couplings

e Fix most parameters at their natural values: ,u§6/12 =3, A2 =1,
and allow only \j6 to vary

o Total 4 free parameters: H, A16, ki and ki (positions of
transitions in k-space)

e (Like all models, must have m? < 1)

x10°

e Obtain primordial P(k) —"bump" model

3 —ACDM power law
with a "bump” feature ﬂ/

and step down in power 25

P(k)

Kk (h Mpe™)
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Bump + void vs. data hysics..

e Combine bump model with simple Gaussian profile underdensity,
with Q,, — 1 outside the void
e \We use following data sets:
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Bump + void vs. data hysics..

e Combine bump model with simple Gaussian profile underdensity,
with Q,, — 1 outside the void
e \We use following data sets:
o SNla: " Constitution” data set (Hicken et al, arXiv:0901.4804)
o CMB: WMAP7 TT and TE data for / > 32
o HKP value Hy = 72 4 8km s 'Mpc™* (Freedman et al,
astro-ph/0012376) HST245
o Hy = 74.343.2km s 'Mpc ™! (Riess et al, arXiv:0905.0695) HST74.3
o Hyp = 62.3+6.3km s 'Mpc™* (Tammann et al, arXiv:0806.3018)
HSTe246

e Can extend study in future to include constraints from BAQO, 719,
og etc.
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(Pxford
hysics.
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—"bump" model
— ACDM power law
- WMAP7 data

(H1)C 27 (u K?)

' "bump" model '
—ACDM power law
WMAP7 data

—InL
Datasets #dof ACDM | Bump + void
CMB 1936 | 2892.5 —0.2
CMB + SN 2333 | 3109.3 -1.7
CMB + SN + HSTgo+6 | 2334 | 3109.6 -1.7
CMB + SN + HST7o45 | 2334 | 3109.4 —-0.4
CMB + SN + HST74+3 | 2334 | 3110.8 +4.5
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hysics.
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Bump + void vs. data hysics..
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e Can match ACDM fit with reasonable Hp, tp and Q,
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Bump + void vs. data hysics..
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e Can match ACDM fit with reasonable Hp, tp and Q,

e Parameters in inflaton potential have "natural” values (with
caveats)
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Summary hysics .

e We use a Gaussian void profile to fit SNla data without
cosmological constant

e We use a physically well-motivated model of inflation to generate a
feature in primordial power

e The model with void and feature successfully fits WMAP7 data as
well

e Unlike previous studies, we find reasonable values of Hy and age of
universe as well
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