systematics uncertainties in the determination of the local dark matter density (+ complementarity of different targets in direct detection)

> in collaboration with: G. Bertone, O. Agertz, B. Moore, R. Teyssier, R. Trotta, L. Baudis

> > Miguel Pato

Universita' degli Studi di Padova / Institut d'Astrophysique de Paris

Institute for Theroretical Physics, University Zürich

4th UniverseNet School Lecce, Italy September 13th-18th 2010

[1] the relevance of the local dark matter density

 $ho_0 \equiv
ho_{dm}(R_0 \sim 8 \; {
m kpc})$

 $:: \rho_0$ is a main astrophysical unknown for DM searches ::

key ingredient to compute DM signals and draw limits uncertainties on ρ_0 are crucial in interpreting positive DM detections

scattering off nuclei

 $\begin{array}{l} \frac{dR}{dE} \propto n_{dm} \int_{v_{min}}^{\infty} dv \; \frac{f(v)}{v} \propto \rho_{0} \\ \\ \text{signal: nuclei recoils} \\ \text{sensitive to } \langle \rho_{0} \rangle_{mpc} \end{array}$

capture in Sun/Earth

 $\frac{dN_{dm}}{dt} = C - 2\Gamma_{ann}$ $C \propto n_{dm} \int_{0}^{v_{max}} dv \frac{f(v)}{v} \propto \rho_{0}$ signal: ν from Sun/Earth sensitive to $\langle \rho_{0} \rangle$

halo annihilation/decay

 $\frac{d\phi}{dE} \propto \langle \sigma_{ann} v \rangle n_{dm}^k \propto \rho_0^k$ signals: γ , e^+ , \bar{p} , ν sensitive to $\langle \rho_0 \rangle$ [not the largest unknown]

◆□ → ◆圖 → ◆臣 → ◆臣 → ○ ● ○ ○ ○ ○ ○

[1] from dynamical observables to ρ_0

Milky Way mass model

bulge(+bar)	\lesssim 3 kpc	$\rho_b(x, y, z) x_b, y_b, z_b$	dark halo
disk	$\lesssim 10~{\rm kpc}$	$\rho_d(r,z) \Sigma_d, r_d, z_d$	
dark halo	$\lesssim 200~{\rm kpc}$	$ ho_{dm}(x,y,z)\propto ho_0$	
+gas			
a m	odel fixes M_i	disk+bulge/bar Milky Way	

$$\sum_{i} \frac{d\phi}{dR}(R) \equiv \frac{G}{R^2} \sum_{i} M_i(< R) = \frac{v^2(R)}{R} \qquad v_0 \equiv v(R_0)$$

 $\boxed{\bar{\rho}_{0} \simeq \frac{1}{4\pi R_{0}^{2}} \left(\frac{1}{G} \left. \frac{\partial \left(v^{2} R \right)}{\partial R} \right|_{R_{0}} - \left. \frac{dM_{d}}{dR} \right|_{R_{0}} \right)}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

dark subhalos

[1] from dynamical observables to ρ_0

observables

[1] from dynamical observables to ρ_0

aim: use observables to constrain mass model parameters

selected references (different models/observables) Caldwell & Ostriker '81 $\rho_0 = 0.23 \pm \times 2 \text{ GeV/cm}^3$ Gates, Gyuk & Turner '95 $\rho_0 = 0.30^{+0.12}_{-0.11} \text{ GeV/cm}^3$ $\rho_0 \simeq 0.18 - 0.30 \text{ GeV/cm}^3$ Moore et al '01 $\rho_0 \simeq 0.18 - 0.71 \text{ GeV/cm}^3$ (isoth.) Belli et al '02 $\Delta \rho_0 / \rho_0 = 20\%$ (projected; 2000 halo stars, v_{esc}) Strigari & Trotta '09 $\rho_0 \simeq 0.39 \pm 0.03 \text{ GeV/cm}^3 \quad \Delta \rho_0 / \rho_0 = 7\% !!$ Catena & Ullio '09 $\rho_0 \simeq 0.43 \pm 0.21 \ {\rm GeV/cm}^3$ Salucci et al '10

usual assumptions: $\rho_{dm} = \rho_{dm}(r)$, ρ_{dm} from DM-only simulations

[2] our numerical framework

difficult to obtain a MW-like galaxy at z = 0 with simulations usually large bulges and small disks result (*L* problem)

recent sucessful attempt: Agertz, Teyssier & Moore 2010 dark matter + gas + stars

cosmological setup

WMAP 5yr cosmology select DM-only halo $M_{vir} \sim 10^{12} {
m ~M}_{\odot}$ $R_{vir} \sim 205 {
m ~kpc}$ no major merger for z < 1 baryonic features

star formation (Schmidt law; ϵ_{ff} , n_0) $\dot{\rho}_g = -\epsilon_{ff} \frac{\rho_g}{t_{ff}}$ stellar feedback (SNII, SNIa, wind)

 $\frac{\text{numerical features}}{m_{DM}=2.5\times10^6~{\rm M}_\odot} \\ \Delta x=340~{\rm pc}$

main result

MW-like galaxy with $v_c \sim const$, $B/D \sim 0.25$, $r_d \sim 4-5$ kpc

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

[2] our numerical framework

	Run	$\epsilon_{\rm ff}$	Feedback S			Star formati	D			
	SR6-n01e1 SR6-n01e2 SR6-n01e5	$1\ \%\ 2\ \%\ 5\ \%$		SNII SNII SNII	0.1 0.1 0.1					
C	SR6-n01e1ML	(1%)	SNII, SNIa, mass loss			0.1	0.1 cm ⁻³ MW lik			
_	SR6-n01e2ML	2 %	SNII, S	SNIa, mass	0.1	$0.1 {\rm cm}^{-3}$				
L	SR6-n01e5ML	(5%)	SNII, SNIa, mass loss			0.1	0.1 cm ⁻³ baryon+			
	SR6-n1e1 SR6-n1e2 SR6-n1e5	1% 2% 5%	SNII1 cmSNII1 cmSNII1 cm				cm^{-3} cm^{-3} cm^{-3}	-3 -3 -3		
_	Run	$M_{ m disk,s}$	$M_{\rm disk,g}$	$M_{ m bulge,s}$	$r_{\rm d}$ [kpc] (1)	$f_{\rm gas}$ (2)	B/D	B/T	$j_{\rm bar}$ (3)	
	SR6-n01e1 SR6-n01e2 SR6-n01e5	8.6 7.4 5.6	1.6 1.3 0.72	2.0 4.6 7.0	3.8 7.6 ~ 15.0	$\begin{array}{c} 0.13 \\ 0.10 \\ 0.05 \end{array}$	$\begin{array}{c} 0.23 \\ 0.62 \\ 1.25 \end{array}$	$\begin{array}{c} 0.19 \\ 0.38 \\ 0.56 \end{array}$	1920 1655 1305	
	SR6-n01e1ML SR6-n01e2ML SR6-n01e5ML	8.0 8.1 5.5	2.3 1.6 0.93	2.2 3.8 7.2	$5.0 \\ 5.0 \\ \sim 15.0$	0.18 0.12 0.07	$\begin{array}{c} 0.27 \\ 0.47 \\ 1.30 \end{array}$	0.21 0.32 0.57	1960 1718 1464	
	SR6-n1e1 SR6-n1e2 SR6-n1e5	$6.6 \\ 6.4 \\ 6.0$	3.3 2.4 2.1	2.9 4.3 5.2	2.7 2.5 2.7	0.26 0.18 0.16	0.44 0.67 0.87	0.31 0.40 0.46	1594 1804 1643	

to bracket uncertainties we consider: DM only, MW like, baryon+

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ つへぐ

SR6-n01e1ML :: MW like approximately axisymmetric halo

$$10^7 \ {\rm M_{\odot}/kpc^3} \sim 0.38 \ {\rm GeV/cm^3}$$

 $\mathcal{O}\mathcal{A}\mathcal{O}$

[3] halo shape: getting more quantitative

inclusion of baryons prolate \rightarrow oblate halo shape flattening aligned with stellar disk for $R\lesssim 20~{\rm kpc}$

▲ロ → ▲ 冊 → ▲ 目 → ▲ 目 → の Q ()

[3] halo shape: consequences for ρ_0

/ many studies assume a spherical halo [e.g. Catena & Ullio, Strigari & Trotta] / data then constrains the spherical average local density $\bar{\rho_0}$:

$$ar{
ho}_0 \simeq rac{1}{4\pi R_0^2} \left(rac{1}{G} \left. rac{\partial \left(v^2 R
ight)}{\partial R}
ight|_{R_0} - \left. rac{dM_d}{dR}
ight|_{R_0}
ight)$$

/ model triaxial halo is tricky (b/a, c/a not known nor constant) / to estimate systematic uncertainty compare $\bar{\rho}_0 \leftrightarrow \rho_0$ in simulations

strategy

spherical shell 7.5 < R < 8.5 kpc select particles in 3 orthogonal rings divide rings into 8 portions $\Delta \varphi = \pi/4$ evaluate ρ along the ring, $\rho(\varphi)$

[3] halo shape: consequences for ρ_0

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = の々で

[3] halo shape: consequences for ρ_0

just an exercise...

 $ho_0 = 0.466 \pm 0.033(\text{stat}) \pm 0.077(\text{syst}) \text{ GeV/cm}^3$

:: syst > stat ::

future: bayesian study with triaxial halo

イロト 不得 トイヨト イヨト ヨー うへつ

[4] astrophysical uncertainties: why do we care?

direct detection

$$\frac{dR}{dE_R} = \frac{\rho_0}{m_\chi m_N} \int_{v_{min}}^{\infty} d^3 \vec{v} \, v f(\vec{v} + \vec{v}_E; v_{esp}, v_0) \frac{d\sigma_{\chi N}}{dE_R}$$

standard assumptions $\rho_0=0.3~{\rm GeV/cm^3}$ $f(\nu)\propto e^{-\nu^2/\nu_0^2},~\nu_0\simeq 220$ km/s, $\nu_{esc}\simeq 600$ km/s

exclusion limits are not rigid

astrophysics should really be treated as a nuisance in direct searches

[4] astrophysical uncertainties: why do we care?

direct detection

$$\frac{dR}{dE_R} = \frac{\rho_0}{m_\chi m_N} \int_{v_{min}}^{\infty} d^3 \vec{v} \, v f(\vec{v} + \vec{v}_E; v_{esp}, v_0) \frac{d\sigma_{\chi N}}{dE_R}$$

standard assumptions $\rho_0=0.3~{\rm GeV/cm^3}$ $f(\nu)\propto e^{-\nu^2/\nu_0^2},~\nu_0\simeq 220$ km/s, $\nu_{esc}\simeq 600$ km/s

exclusion limits are not rigid

astrophysics should really be treated as a nuisance in direct searches

[5] an application: different targets in direct detection

spin independent scattering rate

$$\frac{dR}{dE_R} = \frac{\rho_0 \sigma_{SI}^p}{m_\chi \mu_{P\chi}^2} \times \underbrace{\mathbf{A}^2 F^2(E_R, \mathbf{A})}_{\text{nuclear physics}} \times \underbrace{\mathcal{F}\left(v_{min}(E_R, \mathbf{A}, m_\chi)\right)}_{\substack{\text{astrophysics}\\v_{min} = \sqrt{m_N E_R/(2\mu_{N\chi}^2)}}$$

breaking $\rho_0 \sigma_{SI}^p / m_{\chi}$ degenaracy use several energy bins and/or targets kinematic limit $m_{\chi} \gg m_N \Rightarrow v_{min} \simeq \sqrt{E_R/(2m_N)}$; $dR/dE_R \propto \rho_0 \sigma_{SI}^p / m_{\chi}$

work in progress

[with Bertone, Trotta, Baudis]

very preliminary!

[5] an application: different targets in direct detection

୶ୡ୕ୖ

[..] conclusions

$\rho_{\rm 0}$ in light of recent N-body+hydro simulations

- > baryons turn DM halo from prolate to oblate
- > flattening is along the disk
- $>
 ho_0/ar
 ho_0\simeq 1.21\pm 0.20$

astrophysical uncertainties: not an academic question!

ultimately limit our ability to combine signals example: complementarity between different targets in direct detection

upcoming direct detection experiments and results urge for accurate control over systematics of astrophysical parameters

[+] the role of baryons on dark matter halos

adiabatic contraction [Blumenthal et al 1986]

spherical mass distribution $M_i(< R_i)$: baryons + dark matter $f_b \sim 0.17$ baryons cool and contract slowly $\rightarrow M_b(< R)$ circular orbits + L = const

$$R(M_b(< R) + M_{dm}(< R)) = R_i M_i(< R_i) = R_i M_{dm}(< R)/(1 - f_b)$$
$$\rho_{dm} \propto R^{-2} \frac{dM_{dm}}{dR}$$

final DM profile is significantly contracted

[+ Gnedin et al 2004, Gustafsson et al 2006]

halo shape

DM-only halos are prolate

+ baryons: more oblate halos (still triaxial)

in any case, $\rho_{dm} \neq \rho_{dm}(r)$

aim

address systematics on ρ_0 in light of recent N-body+hydro simulations a realistic pdf on ρ_0 is needed if we are to convincingly identify WIMPs

[+] halo shape: getting more quantitative

inertia calculations

iterative procedure ['a la Katz et al '91]

$$r < R \rightarrow b/a, c/a, \vec{j}_{a,b,c} \rightarrow q = \sqrt{x^2 + \frac{y^2}{(b/a)^2} + \frac{z^2}{(c/a)^2}} < R \rightarrow ...$$

convergence criterium: 0.5% change in $b/a, c/a$

[+] halo shape: consequences for ρ_0

