Matter parity, scalar dark matter and LHC

Antonio Racioppi

NICPB, Tallinn, Estonia

Lecce, September 13th, 2010

based on 0912.2729; 0912.3797; 1005.4409; 10xx.xxxx in collaboration with M. Raidal, M.Kadastik, K. Kannike (NICPB, Tallinn) K. Huitu (University of Helsinki)

- 4 同 6 4 日 6 4 日 6

Motivation

Constrained Scalar Dark Matter Model LHC signatures Conclusions

Cold Dark Matter does exist! Popular example

Cold Dark Matter does exist!

What we know:

• $\Omega_{DM}/\Omega_b \approx 5.$

DM should be non relativistic.

What we don't know:

► What is DM?

Neutralino, gravitino, axion, axino, KK state, scalar singlet, scalar doublet, ...

• Why is it stable?

R-parity, T-parity, ...

(See McCullough, Albornoz, Frandsen, McCabe, Marsh,

Panotopoulos, Weller, Sokolowska ...)

Motivation

Constrained Scalar Dark Matter Model LHC signatures Conclusions

Cold Dark Matter does exist! Popular example

Popular example

Inert Scalar Models:

- Inert Singlet Model
- Inert Doublet Model

(See Sokolowska)

Motivated by the Higgs portal paradigm: the Higgs boson is the only SM particle that couples to hidden sector.

Limits:

- Why singlet/doublet?
- ► Z₂ symmetry imposed by hand

(4月) イヨト イヨト

Matter Parity P_M Scalar Lagrangian CSDMM Scalar Mass Spectrum

Matter Parity P_M

Gauge group:

- ► $SO(10) \rightarrow \cdots \rightarrow G \times U(1)_X \rightarrow \cdots \rightarrow G_{SM} \times P_M$
- $P_M = Z(2)_X = (-1)^{3(B-L)}$

Matter content (NO SUSY):

- SM fermions in **16** of $SO(10) \rightarrow P_M$ odd
- Higgs in **10** of $SO(10) \rightarrow P_M$ even

イロン イヨン イヨン イヨン

Matter Parity P_M Scalar Lagrangian CSDMM Scalar Mass Spectrum

Matter Parity P_M

Gauge group:

- ► $SO(10) \rightarrow \cdots \rightarrow G \times U(1)_X \rightarrow \cdots \rightarrow G_{SM} \times P_M$
- $P_M = Z(2)_X = (-1)^{3(B-L)}$

Matter content (NO SUSY):

- SM fermions in **16** of $SO(10) \rightarrow P_M$ odd
- Higgs in $\mathbf{10}$ of $SO(10) \rightarrow P_M$ even
- ► Dark Matter in **16** of SO(10) $\rightarrow P_M$ odd Higgs portal paradigm $\}$ \Rightarrow DM is stable

イロン イヨン イヨン イヨン

Matter Parity P_M Scalar Lagrangian CSDMM Scalar Mass Spectrum

SO(10) Lagrangian

Matter content:

- ▶ 10 ∋ SM Higgs
- ▶ **16** ∋ DM

$$V = \mu_1^2 \mathbf{10} \mathbf{10} + \lambda_1 (\mathbf{10} \mathbf{10})^2 + \mu_2^2 \mathbf{\overline{16}} \mathbf{16} + \lambda_2 (\mathbf{\overline{16}} \mathbf{16})^2 + \lambda_3 (\mathbf{10} \mathbf{10}) (\mathbf{\overline{16}} \mathbf{16}) + \lambda_4 (\mathbf{16} \mathbf{10}) (\mathbf{\overline{16}} \mathbf{10}) + \frac{1}{2} (\lambda'_S \mathbf{16}^4 + \text{h.c.}) + \frac{1}{2} (\mu'_{SH} \mathbf{16} \mathbf{10} \mathbf{16} + \text{h.c.})$$

・ロト ・回ト ・ヨト ・ヨト

Matter Parity P_M Scalar Lagrangian CSDMM Scalar Mass Spectrum

Low energy Lagrangian

Matter content:

- ▶ H_1 : Higgs \in **10**, P_M even
- ▶ H_2 , S: DM \in **16**, P_M odd

$$H_2 = \begin{pmatrix} H^+ \\ (H_0 + iA_0)/\sqrt{2} \end{pmatrix}$$
$$S = (S_H + iS_A)/\sqrt{2}$$

イロト イヨト イヨト イヨト

æ

$$\begin{split} V &\simeq \mu_1^2 H_1^{\dagger} H_1 + \lambda_1 (H_1^{\dagger} H_1)^2 + \mu_2^2 H_2^{\dagger} H_2 + \lambda_2 (H_2^{\dagger} H_2)^2 \\ &+ \mu_5^2 S^{\dagger} S + \lambda_5 (S^{\dagger} S)^2 + \frac{\lambda'_S}{2} \left[S^4 + (S^{\dagger})^4 \right] \\ &+ \lambda_{51} (S^{\dagger} S) (H_1^{\dagger} H_1) + \lambda_{52} (S^{\dagger} S) (H_2^{\dagger} H_2) \\ &+ \lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1) \\ &+ \frac{\mu'_{SH}}{2} \left[S H_1^{\dagger} H_2 + H_2^{\dagger} H_1 S^{\dagger} \right] \end{split}$$

Matter Parity P_M Scalar Lagrangian CSDMM Scalar Mass Spectrum

CSDMM

Main Features:

- ► GUT scale initial conditions → RG evolution down to EW scale: <u>Constrained Scalar Dark Matter Model</u>
- Natural embedding of Inert Singlet/Doublet Model
- ► Radiative EWSB induced by DM loops (soft portal µ'_{SH})
 H₁ --►

・ロン ・回と ・ヨン ・ヨン

Some Constraints:

- Perturbativity $\lambda_i < 4\pi$
- Vacuum Stability $\lambda_1 > 0, \ \lambda_2 > 0, \ \dots$
- $M_{DM} > M_Z/2$
- \blacktriangleright 0.94 $\lesssim \Omega_{DM} \lesssim$ 0.129

Matter Parity P_M Scalar Lagrangian CSDMM Scalar Mass Spectrum

Scalar Mass Spectrum

- Physical SM Higgs: H
- Charged Inert Higgs: H⁺
- 4 new neutral scalars:
 - $S_H, S_A, H_0, A_0 \rightarrow S_{DM}, S_{NL}, S_{NL2}, S_{NL3}$
 - Dark Matter: S_{DM}, S_{NL}, usually singlet-like
 - (S_{DM}, S_{NL}) and (S_{NL2}, S_{NL3}) degenerate

 $\begin{array}{l} \mbox{Displaced vertices} \\ S_{\rm NL} \rightarrow S_{\rm DM} f \bar{f} \\ H^+ \rightarrow S_{\rm DM} f \bar{f}' \\ \mbox{LHC production cross sections} \end{array}$

Displaced vertices

- s: sin of the mixing angle
- s tiny since $S_{\rm NL}, S_{\rm DM}$ usually singlet-like.

イロト イヨト イヨト イヨト

 $\begin{array}{l} \mbox{Displaced vertices} \\ S_{\rm NL} \rightarrow S_{\rm DM} f \overline{f} \\ H^+ \rightarrow S_{\rm DM} f \overline{f}' \\ \mbox{LHC production cross sections} \end{array}$

 $\overline{S_{\rm NL}} \rightarrow \overline{S_{\rm DM}} \overline{f}$

Antonio Racioppi Matter parity, scalar dark matter and LHC

æ

 $\begin{array}{l} \text{Displaced vertices} \\ S_{\text{NL}} \rightarrow S_{\text{DM}} f \overline{f} \\ H^{\mp} \rightarrow S_{\text{DM}} f \overline{f}' \\ \text{LHC production cross sections} \end{array}$

$$H^+
ightarrow S_{
m DM} f ar f'$$

$$E_{H^+}=1$$
 TeV, $\ell=\gammaeta c/\Gamma$

・ロン ・四と ・ヨン ・ヨン

Э

 $\begin{array}{l} \mbox{Displaced vertices} \\ S_{\rm NL} \rightarrow S_{\rm DM} f \overline{f} \\ H^+ \rightarrow S_{\rm DM} f \overline{f}' \\ \mbox{LHC production cross sections} \end{array}$

LHC production cross sections

 $\sqrt{s} = 14$ TeV

 $pp(q\bar{q}) \rightarrow H^+H^- \text{ (red)}, pp(gg) \rightarrow H^+H^- \text{ (magenta)},$ $pp(gg) \rightarrow S_{\text{DM,NL}}S_{\text{DM,NL}} \text{ (blue)},$ $pp(q\bar{q}) \rightarrow S_{\text{DM,NL}}H^+ \text{ (green)}, pp(q\bar{q}) \rightarrow S_{\text{NL}}S_{\text{DM}} \text{ (black)}$

Conclusions

- $P_M = (-1)^{3(B-L)}$ from non-SUSY SO(10)
- DM in 16 is scalar analogue of SM fermion
- EWSB can be induced by DM radiative corrections
- DM and H^+ can be seen at LHC with displaced vertex
- $q\bar{q} \rightarrow H^+H^-$ usually dominant
- ▶ $gg \rightarrow H^+H^-$, $S_{NL}S_{NL}$ can be dominant in the non-radiative case for $M_{DM} < 100 \text{ GeV}$

Thank you!

Antonio Racioppi Matter parity, scalar dark matter and LHC

(ロ) (四) (E) (E) (E)

Low energy Lagrangian

Matter content: H_1 (Higgs), H_2 , S (DM)

$$V = \mu_1^2 H_1^{\dagger} H_1 + \lambda_1 (H_1^{\dagger} H_1)^2 + \mu_2^2 H_2^{\dagger} H_2 + \lambda_2 (H_2^{\dagger} H_2)^2 + \mu_s^2 S^{\dagger} S + \frac{\mu_s'^2}{2} \left[S^2 + (S^{\dagger})^2 \right] + \lambda_s (S^{\dagger} S)^2 + \frac{\lambda_s'}{2} \left[S^4 + (S^{\dagger})^4 \right] + \frac{\lambda_s''}{2} (S^{\dagger} S) \left[S^2 + (S^{\dagger})^2 \right] + \lambda_{s1} (S^{\dagger} S) (H_1^{\dagger} H_1) + \lambda_{s2} (S^{\dagger} S) (H_2^{\dagger} H_2) + \frac{\lambda_{s1}' (S^{\dagger} S) (H_1^{\dagger} H_1) \left[S^2 + (S^{\dagger})^2 \right] + \frac{\lambda_{s2}' (S^{\dagger} S) (H_2^{\dagger} H_2)}{2} \left[S^2 + (S^{\dagger})^2 \right] + \lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1) + \frac{\lambda_5}{2} \left[(H_1^{\dagger} H_2)^2 + (H_2^{\dagger} H_1)^2 \right] + \frac{\mu_{SH}}{2} \left[S^{\dagger} H_1^{\dagger} H_2 + H_2^{\dagger} H_1 S \right] + \frac{\mu_{SH}' (S^2 + H_2^{\dagger} H_1 S^{\dagger})}{2}$$

Low energy Lagrangian

 $\mu_{S}^{\prime 2}, \mu_{SH}^{2}, \lambda_{5}, \lambda_{S1}^{\prime}, \lambda_{S2}^{\prime}, \lambda_{S}^{\prime \prime}$: Planck scale suppressed operators $V = \mu_1^2 H_1^{\dagger} H_1 + \lambda_1 (H_1^{\dagger} H_1)^2 + \mu_2^2 H_2^{\dagger} H_2 + \lambda_2 (H_2^{\dagger} H_2)^2$ $+ \mu_{S}^{2}S^{\dagger}S + \frac{\mu_{S}^{\prime 2}}{2} \left[S^{2} + (S^{\dagger})^{2}\right]$ + $\lambda_{\mathcal{S}}(\mathcal{S}^{\dagger}\mathcal{S})^{2}$ + $\frac{\lambda_{\mathcal{S}}'}{2} \left[\mathcal{S}^{4} + (\mathcal{S}^{\dagger})^{4} \right] + \frac{\lambda_{\mathcal{S}}'}{2} (\mathcal{S}^{\dagger}\mathcal{S}) \left[\mathcal{S}^{2} + (\mathcal{S}^{\dagger})^{2} \right]$ $+\lambda_{s1}(S^{\dagger}S)(H_1^{\dagger}H_1)+\lambda_{s2}(S^{\dagger}S)(H_2^{\dagger}H_2)$ $+\frac{\lambda_{S1}^{\prime}}{2}(H_1^{\dagger}H_1)\left[S^2+(S^{\dagger})^2\right]+\frac{\lambda_{S2}^{\prime}}{2}(H_2^{\dagger}H_2)\left[S^2+(S^{\dagger})^2\right]$ + $\lambda_3(H_1^{\dagger}H_1)(H_2^{\dagger}H_2)$ + $\lambda_4(H_1^{\dagger}H_2)(H_2^{\dagger}H_1)$ + $\frac{\lambda_5}{2}\left[(H_1^{\dagger}H_2)^2 + (H_2^{\dagger}H_1)^2\right]$ $+\frac{\mu_{SH}}{2}\left[S^{\dagger}H_{1}^{\dagger}H_{2}+H_{2}^{\dagger}H_{1}S\right]+\frac{\mu_{SH}^{\prime}}{2}\left[SH_{1}^{\dagger}H_{2}+H_{2}^{\dagger}H_{1}S^{\dagger}\right]$

Radiative EWSB

Antonio Racioppi Matter parity, scalar dark matter and LHC

Tree level mass matrices

$$\begin{split} m_{\mathrm{R1}}^2 &= \frac{1}{4} \left[2\mu_2^2 + 2\mu_3^2 + 2(\mu_5')^2 + v^2(\lambda_3 + \lambda_4 + \lambda_5 + \lambda_{51} + \lambda_{51}') \right. \\ &\left. -\sqrt{2(\mu_{5H} + \mu_{5H}')^2 v^2 + [2\mu_2^2 - 2\mu_3^2 - 2(\mu_5')^2 + v^2(\lambda_3 + \lambda_4 + \lambda_5 - \lambda_{51} - \lambda_{51}')]^2} \right] \\ m_{\mathrm{I1}}^2 &= \frac{1}{4} \left[2\mu_2^2 + 2\mu_3^2 - 2(\mu_5')^2 + v^2(\lambda_3 + \lambda_4 - \lambda_5 + \lambda_{51} - \lambda_{51}') \right. \\ &\left. -\sqrt{2(\mu_{5H} - \mu_{5H}')^2 v^2 + [2\mu_2^2 - 2\mu_3^2 - 2(\mu_5')^2 + v^2(\lambda_3 + \lambda_4 - \lambda_5 - \lambda_{51} + \lambda_{51}')]^2} \right] \\ m_{\mathrm{R2}}^2 &= \frac{1}{4} \left[2\mu_2^2 + 2\mu_3^2 + 2(\mu_5')^2 + v^2(\lambda_3 + \lambda_4 + \lambda_5 + \lambda_{51} + \lambda_{51}') \right. \\ &\left. +\sqrt{2(\mu_{5H} + \mu_{5H}')^2 v^2 + [2\mu_2^2 - 2\mu_3^2 - 2(\mu_5')^2 + v^2(\lambda_3 + \lambda_4 + \lambda_5 - \lambda_{51} - \lambda_{51}')]^2} \right] \\ m_{\mathrm{I2}}^2 &= \frac{1}{4} \left[2\mu_2^2 + 2\mu_3^2 - 2(\mu_5')^2 + v^2(\lambda_3 + \lambda_4 - \lambda_5 + \lambda_{51} - \lambda_{51}') \right. \\ &\left. +\sqrt{2(\mu_{5H} - \mu_{5H}')^2 v^2 + [2\mu_2^2 - 2\mu_3^2 - 2(\mu_5')^2 + v^2(\lambda_3 + \lambda_4 - \lambda_5 - \lambda_{51} + \lambda_{51}')]^2} \right] \\ &\left. +\sqrt{2(\mu_{5H} - \mu_{5H}')^2 v^2 + [2\mu_2^2 - 2\mu_3^2 - 2(\mu_5')^2 + v^2(\lambda_3 + \lambda_4 - \lambda_5 - \lambda_{51} - \lambda_{51}')]^2} \right] \\ \end{array}$$

DM direct detection:Radiative EWSB

DM direct detection:Without Radiative EWSB

LHC production. Diagrams

Э