UniverNet – 4th Annual School – Frontiers of Particle Cosmology

Cormic Equation of State from Strong Gravitational lenring Syrtem

Beata Malec

Copernicus Center for Interdisciplinary Studies Cracow

in collaboration with Marek Biesiada and Aleksandra Piórkowska

13-18, September, Lecce, Italy

The 4th UniverseNet School

Introduction

- The explanation of he origin of dark energy is far from obvious and broadly speaking involves either invoking an unknown exotic component or modification of gravity at cosmological scales.
- Irrespective of theoretical approach chosen a common point with the observations usually occures at the level of w(z) cofficient in an effective equation of state for dark energy

 $p = w(z)\rho$

- The power of modern cosmology lies in building up cosistency rather than in single experiment.
- Every alternative method of restricting cosmological parameters is desired
- We propse to use strongly gravitationally lensed systems in this context such ida was discussed in *Biesiada M., 2006, Phys. Rev. D 73, 023006* and in *Grillo et al., 2008, Astron. Astrophys., 477,397*

Gravitational lensing

- It is one of the basic consequences of GR (Einstein 1916)
- Deflection of light ray by 1".7 near the limb of the Sun (measured in 1919 !)
- Eddington 1920 idea of multiple images; Einstein 1935
- Cosmological context :Zwicky 1937 (!)
- New history Refsdal 1964 H0 measurement through gravitational lensing
- Walsh, Carswell & Weynmann 1979 -QSO-0957+561A,B
- Paczyński 1986 microlensing
- Lynds & Petrosian 1986; Soucail, Fort, Mellier 1987 - giant arcs in galaxy clusters

Regimes of gravitational lensing

strong

- large deflections
- multiple images
- microlensing-lensing within lensing fluctuations inside quasar macroimages

weak

- tiny distortion of back ground galaxies
- statistical in nature

Einstein radius - setteld by mass – gives characteristic angular scale of fenomenon

$$\theta_E = \sqrt{\frac{4GM}{c^2} \frac{D_{LS}}{D_L D_S}}$$

for point lens

13-18, September, Lecce, Italy

The Method

- our interest concentrated around: •
 - regime:strong & -- lens: galaxy _
- the image separations in the system • depend on angular diameter distances D_{is} and D_s
- angular diameter distances determined by ٠ background cosmology

spatial flatness is assumed • (Hinshaw et al. 2009)

$$\Omega_{tot} = 1.0050^{+0.0060}_{-0.0061}$$

realistic lens model is needed •

Source plane 0., Lers plane D_{ms} $D_{\sigma_{k'}}$ Observer plane

The Method

 mass density profile approximeted by - SIS -Singular Isothermal Sphere model (SIE –singular isothermal elipsoid)

$$\rho(r) = \frac{\sigma_{SIS}^2}{2\pi G} \frac{1}{r^2}$$

$$v_{rot}^2 = const.$$

• Einstein ring reads

$$\theta_E = 4\pi \frac{\sigma_{SIS}^2}{c^2} \frac{D_{ls}}{D_s}$$
$$D(z;p) = \frac{1}{1+z} \frac{c}{H_0} \int_0^z \frac{dz'}{h(z';p)}$$

- σ_{SIS} lens velocity dispersion is well approximated by σ_{o} central stellar velocity dispersion (see eg. Grillo et al. 2008)
- Central relation $D^{th}(z_l, z_s, p)$ D^{bs} D^{bs}

The Method

- cosmological models enter through dsistance ratio
- for observable counterpart we need realiable assessment of σ_{o} and θ_{E}

$${}^{th}(z_{l}, z_{s}, p) = \frac{D_{s}(p)}{D_{ls}(p)} = \frac{\int_{0}^{z_{s}} [dz' / h(z'; p)]}{\int_{z_{l}}^{z_{s}} [dz' / h(z'; p)]}$$

$$D^{obs} = \frac{4\pi\sigma_{0}^{2}}{D^{obs}}$$

advantages of the method:

 $c^2 \theta_{\scriptscriptstyle E}$

•independence on H₀

 not affected by dust absorption, source evolutionary effect

 Cosmological parameters were fitted by minimizing

$$\chi^{2}(p) = \sum_{i} \frac{(D_{i}^{obs} - D_{i}^{th}(p))^{2}}{\sigma_{D,i}^{2}}$$

Samples used

	Lens ID	ঝ	7/3	$\theta_E['']$	$\sigma_0 [km/s]$	Star of		
	SDSS J0037-0942	0.1955	0.6322	1.47	282 ± 11			1
	SDSS J0216-0813	0.3317	0.5235	1.15	349 ± 24			$\langle D_{\mu} \rangle$
L	SDSS J0737+3216	0.3223	0.5812	1.03	326 ± 16			$\left\langle \frac{ls}{r} \right\rangle = 0.58$
	SDSS J0912+0029	0.1642	0.3240	1.61	325 ± 12	100		$\langle D_{\rm s} \rangle_{\rm space}$
_	SDSS J0956+5100	0.2405	0.4700	1.32	318 ± 17			V ST SLACS
L	SDSS J0959+0410	01260	0 5349	1 00	229 ± 13		10	
	SDSS J1250+0523	0.2318	0.7950	1.15	274 ± 15		0	full complo n=20
L	SDSS J1330-0148	0.0808	0.7115	0.85	195 ± 10		Ă	Tuil Sample 11-20
	SDSS J1402+6321	0.2046	0.4814	1.39	290 ± 16			
E	SDSS J1420+6019	0.0629	0.5352	1.04	206 ± 5		0)	•sub-sample n=7
	SDSS J1627-0053	0.2076	0.5241	1.21	295 ± 13			
	SDSS J1630+4520	0.2479	0.7933	1.81	279 ± 17	163		
	SDSS J2300+0022	0.2285	0.4635	1.25	305 ± 19	0.9		
	SDSS J2303+1422	0.1553	0.5170	1.64	271 ± 16	See.		•for comparison
	SDSS J2321-0939	0.0819	0.5324	1.57	245 ± 7			fit on Union sample
L	Q0047-2808	0.485	3.595	1.34	229 ± 15			it on onion sample –
	CFRS03.1077	0.938	2.941	1.24	251 ± 19		Ω	compilation of Kowalski et a
	HST 14176	0.810	3.399	1.41	224 ± 15	\geq	S	(2008)
	HST 15433	0.497	2.092	0.36	116 ± 10			n=307 SNIa
	MG 2016	1.004	3.263	1.56	328 ± 32			

Cosmological models tested

• ACDM

$$h(z) = \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}$$
 $\mathbf{p} = \{\Omega_m\}$

• Quintessence

$$h(z) = \sqrt{\Omega_m (1+z)^3 + \Omega_Q (1+z)^{3(1+w)}}$$

w = const.

w = -1

 Ω_{m} fixed $\mathbf{p} = \{w\}$

Chevalier-Polarski-Linder

$$h(z) = \sqrt{\Omega_m (1+z)^3 + \Omega_Q (1+z)^{3(1+w_0+w_a)}} \exp\left(\frac{-3w_a z}{1+z}\right)$$

$$w(z) = w_0 + w_a \frac{z}{1+z}$$

$$\Omega_m \text{ fixed} \qquad \mathbf{p} = \{w_0, w_a\}$$

13-18, September, Lecce, Italy The 4th UniverseNet School

Results: fits on the full sample n=20

Cosmological model Best fit parameters (with 1σ) χ^2/dof Lens sample • SLACS+LSD ACDM not possible (n=15+5)Quintessence $w = -0.9829 \pm 0.2415$ 3.41prior on $\Omega_{\rm m}$ =0.27 $w_0 = 1.2605 \pm 0.8177$ Chevalier-Linder-Polarski 3.05 $w_a = -9.4443 \pm 4.4193$ Union08 • Cosmological model Best fit parameters (with 1σ) χ^2/dof SNIa sample ACDM $\Omega_m = 0.287 \pm 0.027$ 1.02(n=307)Quintessence $w = -1.061 \pm 0.083$ 1.02prior on $\Omega_m = 0.27$ Chevalier-Linder-Polarski $w_0 = -1.263 \pm 0.257$ 1.02 $w_a = 1.254 \pm 1.484$

•Quintessence : whole 2 σ CI from SNIa fits well with 1 σ CI from lenses $\langle -1.23, -0.85 \rangle$ $\langle -1.22, -0.74 \rangle$

Chevalier-Polar/ki-linder: bet/ fit/ and confidence region/

13-18, September, Lecce, Italy The 4th UniverseNet School

Results: fits on the restricted sample n=7

•	on the restricted
	sample

on the restricted	Cosmological model	Best fit parameters (with 1σ)	χ^2/dof
sample	ACDM	$\Omega_m = 0.2660 \pm 0.2796$	1.76
(n=7)	Quintessence	$w = -0.6320 \pm 0.4461$	3.91
prior on $\Omega_{\rm m}$ =0.27 \prec	Chevalier-Linder-Polarski	$w_0 = 0.3588 \pm 1.2453$	1.88
P. S. C. Set		$w_a = -3.6301 \pm 5.3278$	

•ΛCDM fits – agreement with SNIa fits

•Quintessence: 2σ interval for the Union08 falls into 2σ interval for lenses

13-18, September, Lecce, Italy The 4th UniverseNet School

Conclusions

- Obtained results demonstrate possibility of practical use of strong gravitational system in constraining cosmological models
- The small number of lenses available (at the time when we start consider this issue -2009) prevent as from precisely determining parmeters of cosmological, but it still proves the feasibility of the method.
- Over the year the SLACS sample of lenses with realiable data on σ_{o} and θ_{E} has grown up to 58 .
- Grillo et al. 2008 demonstrated that sample of 100 or 200 lensing systems would be enough to give competitive constraints (constraints on Ω_{Λ}).
- Work on actually available sample is in progress.
- Presented results are also available in the paper:

Biesiada M., Piórkowska A., Malec B., MNRAS, 406,1055-1059 (2010)