Ippocratis Saltas together with Martin Kunz ¹

University of Sussex

¹Université de Genève

Modified gravity models provide an alternative explanation to the late time acceleration of the universe - No need for cosmological constant or scalar fields.

²S. F. Daniel and E. V. Linder (2010), arXiv: 1008.0397

- Modified gravity models provide an alternative explanation to the late time acceleration of the universe - No need for cosmological constant or scalar fields.
- ► Their higher order nature provides us with the freedom to reproduce any expansion history → Indistinguishable from GR at the background level!

²S. F. Daniel and E. V. Linder (2010), arXiv: 1008.0397

- Modified gravity models provide an alternative explanation to the late time acceleration of the universe - No need for cosmological constant or scalar fields.
- ► Their higher order nature provides us with the freedom to reproduce any expansion history → Indistinguishable from GR at the background level!
- Crucial test at the perturbation level: So far, no signature of departure from GR has been observed. $(\phi/\psi \sim 1)^2$

²S. F. Daniel and E. V. Linder (2010), arXiv: 1008.0397

- Modified gravity models provide an alternative explanation to the late time acceleration of the universe - No need for cosmological constant or scalar fields.
- ► Their higher order nature provides us with the freedom to reproduce any expansion history → Indistinguishable from GR at the background level!
- Crucial test at the perturbation level: So far, no signature of departure from GR has been observed. $(\phi/\psi \sim 1)^2$
- **Smoking gun**: The detection of non-zero anisotropic stress.

²S. F. Daniel and E. V. Linder (2010), arXiv: 1008.0397

- Modified gravity models provide an alternative explanation to the late time acceleration of the universe - No need for cosmological constant or scalar fields.
- ► Their higher order nature provides us with the freedom to reproduce any expansion history → Indistinguishable from GR at the background level!
- Crucial test at the perturbation level: So far, no signature of departure from GR has been observed. $(\phi/\psi \sim 1)^2$
- **Smoking gun**: The detection of non-zero anisotropic stress.
- Question: Is it possible to build a viable modified gravity scenario with a signature sufficiently close to that of GR?

²S. F. Daniel and E. V. Linder (2010), arXiv: 1008.0397

What is the significance of anisotropic stress?

Scalar perturbations around flat FRW metric:

$$ds^{2} = -(1+2\psi)dt^{2} + a(t)^{2}(1+2\phi)dx^{2}$$

Anisotropy equation describes the scalar anisotropic stress Π:

$$\phi - \psi \equiv \Pi(\mathbf{x}, t)$$

► The ratio φ/ψ is a signature of any gravity model at perturbation level. (Future surveys, ex. Euclid, Planck: Weak lensing + Galaxy power spectrum + CMB.)

▶ In GR, at all times $\phi/\psi = 1$, unless relativistic species present (negligible at late times).

Anisotropic stress in modified gravity

The higher order nature of modified gravity models contributes an effective anisotropic stress contribution of geometrical origin.

$$\phi - \psi = \Pi^{\text{(eff)}}(g)$$

- As a result, $\phi/\psi \neq 1 \leftrightarrow$ non zero (effective) anisotropic stress.
- ► Typical behavior for all higher order gravity models, f(R), f(R, G), DGP, e.t.c.

Anisotropic stress

So, can we have a modified gravity model with a sufficiently small effective anisotropic stress contribution, such that it could escape observations?

 \rightarrow Try to attempt a *qualitative analysis* in de Sitter space.

-Anisotropic stress

 \Box The case of f(R) gravity

Special case I: Anisotropic stress in f(R) gravity

The most straightforward generalization of GR:

$$S = \int d^4x \sqrt{-g} f(R)$$

• Exhibits an extra scalar degree of freedom ("scalaron") with $m^2_{eff} \propto rac{1}{f_{op}}.$

Anisotropy equation:

$$\phi - \psi = \Pi_R^{\text{(eff)}} \equiv \frac{f_{RR}}{f_R} \delta R$$

▲ロト ▲掃 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ ∽ Q @

-Anisotropic stress

 \Box The case of f(R) gravity

Special case I: Anisotropic stress in f(R) gravity

The most straightforward generalization of GR:

$$S = \int d^4x \sqrt{-g} f(R)$$

Exhibits an extra scalar degree of freedom ("scalaron") with

$$m_{eff}^2 \propto rac{1}{f_{RR}}.$$

Anisotropy equation:

$$\phi - \psi = \Pi_R^{\text{(eff)}} \equiv \frac{f_{RR}}{f_R} \delta R$$

► If we would like $\Pi_R^{(\text{eff})} = 0$ at all times we should require that $f_{RR} = 0$. GR is the only solution $f(R) = R + \Lambda!$

Anisotropic stress

L The case of f(G) gravity

Special case II: Anisotropic stress in f(G) gravity

$$S=\int d^4x\sqrt{-g}\left(R+f(G)\right)$$

- The Gauss–Bonnet term: $G \equiv R^2 4R^{\mu\nu}R_{\mu\nu} + R^{\mu\nu\kappa\lambda}R_{\mu\nu\kappa\lambda}$.³
- Gauss–Bonnet term correction to the Einstein–Hilbert term motivated by string theory.
- Extra scalar degree of freedom with $m_{eff}^2 \propto \frac{1}{f_{GG}}$.
- The anisotropy equation is similar to f(R) case:

$$\phi - \psi \equiv \Pi_G^{\text{(eff)}} = 4H^2 f_{GG} \delta G$$

- ³D. Lovelock (1971) J. Math. Phys. **12** 3 498–501
- ⁴B. Zwiebach Phys. Lett. B **156** 315 (1985)

Anisotropic stress

L The case of f(G) gravity

Special case II: Anisotropic stress in f(G) gravity

$$S=\int d^4x\sqrt{-g}\left(R+f(G)\right)$$

- The Gauss–Bonnet term: $G \equiv R^2 4R^{\mu\nu}R_{\mu\nu} + R^{\mu\nu\kappa\lambda}R_{\mu\nu\kappa\lambda}$.
- Gauss–Bonnet term correction to the Einstein–Hilbert term motivated by string theory.⁴
- Extra scalar degree of freedom with $m_{eff}^2 \propto rac{1}{f_{GG}}$.
- The anisotropy equation is similar to f(R) case:

$$\phi - \psi \equiv \Pi_G^{\text{(eff)}} = 4H^2 f_{GG} \delta G$$

▶
$$\Pi_G^{\text{(eff)}} = 0$$
 at all times $\leftrightarrow S \propto R + G + \Lambda$
³D. Lovelock (1971) J. Math. Phys. **12** 3 498–501

⁴B. Zwiebach Phys. Lett. B **156** 315 (1985)

Anisotropic stress and stability in modified gravity models Anisotropic stress

L The case of f(R, G) gravity

The more general case: Anisotropic stress in f(R, G) gravity

$$S=\int d^4x\sqrt{-g}f(R,G)$$

▶ Characterized by *two different contributions*: *R* and *G* contribution.

Anisotropy equation:

$$\phi - \psi \equiv \Pi_{\text{total}}^{\text{(eff)}} = \Pi_R^{\text{(eff)}} + \Pi_G^{\text{(eff)}}$$

Anisotropic stress and stability in modified gravity models — Anisotropic stress

L The case of f(R, G) gravity

The more general case: Anisotropic stress in f(R, G) gravity

$$S=\int d^4x\sqrt{-g}f(R,G)$$

▶ Characterized by *two different contributions*: *R* and *G* contribution.

Anisotropy equation:

$$\phi - \psi \equiv \Pi_{\text{total}}^{\text{(eff)}} = \Pi_R^{\text{(eff)}} + \Pi_G^{\text{(eff)}}$$

► In order for $\Pi_{\text{total}}^{(\text{eff})} = 0$: $\Pi_R^{(\text{eff})} = -\Pi_G^{(\text{eff})}$

$$\frac{\partial^2 f}{\partial R^2} + 4H_0^2 \frac{\partial^2 f}{\partial R \partial G} + 16H_0^4 \frac{\partial^2 f}{\partial G^2} = 0.$$

Solution: $f(R,G) = f_1\left(R - \frac{G}{4M^2}\right) + Rf_2\left(R - \frac{G}{4M^2}\right)$, with $M^2 = H^2_0$

Anisotropic stress

 \Box Stability in f(R, G) gravity

Evolution of gauge invariant potential

$$\ddot{\Phi} + 3 H \dot{\Phi} + \left(\frac{k^2}{a^2} + m_{\text{eff}}^2\right) \Phi = 0$$

Effective mass of scalaron:

$$m_{eff}^2 \equiv rac{f_R}{3[f_{RR} + 4H_0^2(2f_{GG} + 4H_0^2f_{GG})]} - 4H_0^2 \geq 0.$$

⁵A. A. Starobinsky JETP Lett. **86**, 157-163 (2007)

Anisotropic stress

 \Box Stability in f(R, G) gravity

Evolution of gauge invariant potential

$$\ddot{\Phi} + 3 H \dot{\Phi} + \left(\frac{k^2}{a^2} + m_{eff}^2\right) \Phi = 0$$

Effective mass of scalaron:

$$m_{eff}^2 \equiv rac{f_R}{3[f_{RR} + 4H_0^2(2f_{GG} + 4H_0^2f_{GG})]} - 4H_0^2 \ge 0.$$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

► For
$$f(R, G) = f_1\left(R - \frac{G}{4M^2}\right) + Rf_2\left(R - \frac{G}{4M^2}\right)$$
,
when $M^2 \to H_0^2 \Rightarrow m_{eff} \to \infty$.

⁵A. A. Starobinsky JETP Lett. **86**, 157-163 (2007)

Anisotropic stress

 \Box Stability in f(R, G) gravity

Evolution of gauge invariant potential

$$\ddot{\Phi} + 3 H \dot{\Phi} + \left(\frac{k^2}{a^2} + m_{\text{eff}}^2\right) \Phi = 0$$

Effective mass of scalaron:

$$m_{eff}^2 \equiv rac{f_R}{3[f_{RR} + 4H_0^2(2f_{GG} + 4H_0^2f_{GG})]} - 4H_0^2 \geq 0.$$

► For
$$f(R, G) = f_1\left(R - \frac{G}{4M^2}\right) + Rf_2\left(R - \frac{G}{4M^2}\right)$$
,
when $M^2 \to H_0^2 \Rightarrow m_{eff} \to \infty$.

• WKB approximation: $\Phi(t) \approx \sum_{\pm} C_{\pm} e^{(-H_0 \pm 2im_{eff})t}$.

⁵A. A. Starobinsky JETP Lett. **86**, 157-163 (2007)

Anisotropic stress

 \Box Stability in f(R, G) gravity

Evolution of gauge invariant potential

$$\ddot{\Phi} + 3 H\dot{\Phi} + \left(\frac{k^2}{a^2} + m_{eff}^2\right) \Phi = 0$$

Effective mass of scalaron:

$$m_{eff}^2 \equiv rac{f_R}{3[f_{RR} + 4H_0^2(2f_{GG} + 4H_0^2f_{GG})]} - 4H_0^2 \geq 0.$$

► For
$$f(R, G) = f_1\left(R - \frac{G}{4M^2}\right) + Rf_2\left(R - \frac{G}{4M^2}\right)$$
,
when $M^2 \to H_0^2 \Rightarrow m_{eff} \to \infty$.

- WKB approximation: $\Phi(t) \approx \sum_{\pm} C_{\pm} e^{(-H_0 \pm 2im_{eff})t}$.
- ► $\delta R(t) \propto m_{eff}^2 \Phi(t) \Rightarrow$ large curvature oscillations. (Overproduction of scalarons? ⁵)

⁵A. A. Starobinsky JETP Lett. **86**, 157-163 (2007)

Anisotropic stress

 \Box Stability in f(R, G) gravity

Evolution of gauge invariant potential

$$\ddot{\Phi} + 3 H \dot{\Phi} + \left(\frac{k^2}{a^2} + m_{eff}^2\right) \Phi = 0$$

Effective mass of scalaron:

$$m_{eff}^2 \equiv rac{f_R}{3[f_{RR} + 4H_0^2(2f_{GG} + 4H_0^2f_{GG})]} - 4H_0^2 \ge 0.$$

► For
$$f(R, G) = f_1\left(R - \frac{G}{4M^2}\right) + Rf_2\left(R - \frac{G}{4M^2}\right)$$
,
when $M^2 \to H_0^2 \Rightarrow m_{eff} \to \infty$.

- WKB approximation: $\Phi(t) \approx \sum_{\pm} C_{\pm} e^{(-H_0 \pm 2im_{eff})t}$.
- ► $\delta R(t) \propto m_{eff}^2 \Phi(t) \Rightarrow$ large curvature oscillations. (Overproduction of scalarons? ⁵)
- Upper bound: $m_{eff}^2 < M_P^2$.

⁵A. A. Starobinsky JETP Lett. **86**, 157-163 (2007)

 \Box Stability in f(R, G) gravity

The sound speed

The sound speed for $f(R, G) = f_1\left(R - \frac{G}{4M^2}\right) + Rf_2\left(R - \frac{G}{4M^2}\right)$ and a general expansion $H \equiv H(t)$:

$$c_s^2 = 1 + \left(rac{1}{1-rac{M^2}{4H^2}}
ight) rac{8\dot{H}}{4H^2}$$

Above three regimes are a general feature of all f(R, G) theories. ⁶

⁶A. De Felice and T. Suyama, JCAP06, 034 (2009)

Conclusions & future work

- The effective anisotropic stress in modified gravity theories is directly linked with the extra scalar degree of freedom that characterizes them.
- ► If the theory is to be viable, the higher order effects cannot be arbitrarily suppressed → lower bound will be crucial for ruling out modified gravity observationally.
- Although demonstrated qualitatively for de Sitter spacetime, the same is expected for other cases (as inclusion of matter)
 → numerical investigation needed.⁷
- Future work includes putting a lower limit on φ/ψ for viable modified gravity models, considering the more general case with the inclusion of matter.

Thank you !

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ