Inert Model and the evolution of the Universe

Dorota Sokołowska

Institute of Theoretical Physics, University of Warsaw

4th UniverseNet School – Frontiers of Particle Cosmology Lecce, 13-18.09.2010

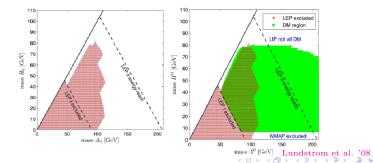
collaboration with Ilya Ginzburg, Konstantin Kanishev (Novosibirsk) and Maria Krawczyk (Warsaw)

Motivation

T.D. Lee, '73 Deshpande, Ma, '78

Two Higgs Doublet Model (2HDM):

- two scalar $SU(2)_W$ doublets Φ_S, Φ_D with the same hypercharge Y=1
- CP violation in the scalar sector (explicit or spontaneous violation)
- different types of extrema (possible violation of $U(1)_{EM}$)
- 2HDM with an exact Z_2 symmetry
 - → candidate for the dark matter (Inert Model)



2HDM

T.D. Lee, '73

Higgs potential V with an explicit \mathbb{Z}_2 symmetry:

$$Z_2: \quad \Phi_S \to \Phi_S, \quad \Phi_D \to -\Phi_D$$

$$V = -\frac{1}{2} \left[m_{11}^2 \Phi_S^{\dagger} \Phi_S + m_{22}^2 \Phi_D^{\dagger} \Phi_D \right] + \frac{1}{2} \left[\lambda_1 \left(\Phi_S^{\dagger} \Phi_S \right)^2 + \lambda_2 \left(\Phi_D^{\dagger} \Phi_D \right)^2 \right]$$

$$+ \lambda_3 \left(\Phi_S^{\dagger} \Phi_S \right) \left(\Phi_D^{\dagger} \Phi_D \right) + \lambda_4 \left(\Phi_S^{\dagger} \Phi_D \right) \left(\Phi_D^{\dagger} \Phi_S \right) + \frac{1}{2} \lambda_5 \left[\left(\Phi_S^{\dagger} \Phi_D \right)^2 + \left(\Phi_D^{\dagger} \Phi_S \right)^2 \right]$$

- All parameters $\in \mathbb{R}$ no CP violation
- Model I only Φ_S couples to fermions

The positivity constrains are required to have a stable vacuum:

$$\lambda_1 > 0, \quad \lambda_2 > 0, \quad R+1 > 0, \quad R_3 + 1 > 0$$
$$\lambda_{345} = \lambda_3 + \lambda_4 + \lambda_5, \quad R = \lambda_{345} / \sqrt{\lambda_1 \lambda_2}, \quad R_3 = \lambda_3 / \sqrt{\lambda_1 \lambda_2}$$

Positivity constrains \rightarrow extremum with the lowest energy is the global minimum (vacuum).

Spontaneous Symmetry Breaking

The EW symmetric extremum:

$$\langle \Phi_S \rangle = \langle \Phi_D \rangle = 0$$

local minimum if $m_{11,22}^2 < 0$.

Barroso et al., '05

The general type of EWSB VEV:

$$\langle \Phi_S \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_S \end{pmatrix}, \quad \langle \Phi_D \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} u \\ v_D \end{pmatrix}$$

 $u \neq 0 \Longrightarrow U(1)_{EM}$ broken:

• charge breaking (Ch)

 $u = 0 \Longrightarrow U(1)_{EM}$ conserved:

- $v_{S,D} \neq 0$ neutral mixed (M)
- $v_D = 0$ neutral Inert (I_1)

Deshpande, Ma, '78; Barbieri, Hall, Rychkov, '06

• $v_S = 0$ neutral Inert-like (I_2)

Charge breaking and Mixed extrema

Charge breaking extremum Ch:

$$\langle \Phi_S \rangle = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0 \\ v_S \end{array} \right), \quad \langle \Phi_D \rangle = \frac{1}{\sqrt{2}} \left(\begin{array}{c} \mathbf{u} \\ 0 \end{array} \right)$$

- $U(1)_{EM}$ symmetry broken by $u \neq 0$ massive photon
- not a case that is realized now, a possible vacuum in the past if

$$\lambda_4 \pm \lambda_5 > 0, \quad R_3 < 1$$

Mixed extremum M:

$$\langle \Phi_S \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_S \end{pmatrix}, \quad \langle \Phi_D \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_D \end{pmatrix}$$

- CP conserving, $\tan \beta = v_D/v_S$
- massive $Z^0, W^{\pm},$ massless photon, 5 physical Higgs bosons H^{\pm}, A, H, h

$$R < 1$$
, $\lambda_4 + \lambda_5 < 0$, $\lambda_5 < 0$

Inert and Inert-like

Deshpande, Ma, '78, Barbieri et al., '06

Inert extremum I_1 :

$$\langle \Phi_S \rangle = \begin{pmatrix} 0 \\ v_S \end{pmatrix}, \quad \langle \Phi_D \rangle = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

- exact Z_2 symmetry both in Lagrangian and in the extremum
- only Φ_D has odd Z_2 -parity
 - \rightarrow the lightest scalar is a candidate for the dark matter
- Φ_S as in SM (SM-like Higgs boson h) • Φ_D – "dark" or inert doublet with 4 dark scalars (H, A, H^{\pm}) , no interaction with fermions

Inert-like extremum I_2 :

$$\langle \Phi_S \rangle = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \langle \Phi_D \rangle = \begin{pmatrix} 0 \\ v_D \end{pmatrix}$$

- Φ_S and Φ_D exchange roles
- fermions massless at tree-level (Model I)

Evolution of the Universe

Ivanov '08

- We assume that today Inert Model is realized, however, in the past some other extrema could have been lower.
- We consider evolution of the Universe due to the thermal corrections to the potential.
- ullet At finite T ground state is given by minimum of Gibbs potential:

$$V_G(T) = Tr(Ve^{-H/T})/Tr(e^{-H/T}) \equiv V(T=0) + \Delta V(T)$$

• $\Delta V(T)$ – leading corrections $\propto T^2$ given by diagrams:

 \implies fixed quartic terms, quadratic (mass) terms change with T

$$\Delta V(T) = \frac{1}{2}c_1T^2\Phi_S^{\dagger}\Phi_S + \frac{1}{2}c_2T^2\Phi_D^{\dagger}\Phi_D$$

Evolution of the Universe

From scalar, bosonic and fermionic contributions to ΔV :

$$m_{11}^2(T) = m_{11}^2 - c_1 T^2 , \quad m_{22}^2(T) = m_{22}^2 - c_2 T^2$$

$$c_1 = \frac{3\lambda_1 + 2\lambda_3 + \lambda_4}{12} + \frac{3g^2 + g'^2}{32} + \frac{g_t^2 + g_b^2}{8}, \quad c_2 = \frac{3\lambda_2 + 2\lambda_3 + \lambda_4}{12} + \frac{3g^2 + g'^2}{32}$$

• fermionic contribution in
$$c_1$$
 because of Model I

- c_1 and c_2 positive to restore EW symmetry in the past
- $c_1 + c_2 > 0$ from positivity constrains

For a given T we determine:

- sign of $m_{ii}^2 \to \text{possible}$ existence of given extremum
- values of λ_i (fixed) \rightarrow existence of a given local minimum
- value of extremum energy \rightarrow global minimum

\Rightarrow sequences of possible phase transitions

The evolution of vacuum states and phase transitions in 2HDM during cooling of Universe,

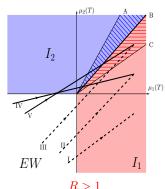
I.F. Ginzburg, I.P. Ivanov, K.A. Kanishev, Phys.Rev.D81:085031,2010

^{– 2}HDM with soft Z_2 violation

Possible sequences I

The possible sequences of phase transitions on (μ_1, μ_2) plane:

$$\mu_1(T) = m_{11}^2(T)/\sqrt{\lambda_1}, \quad \mu_2(T) = m_{22}^2(T)/\sqrt{\lambda_2}.$$



red hatch $-I_1$ global and I_2 local min, blue hatch $-I_2$ global and I_1 local min;

$$\begin{array}{l} A: \ \mu_2(T) = \mu_1(T)R, \\ B: \ \mu_2(T) = \mu_1(T), \\ C: \ \mu_2(T) = \mu_1(T)/R \end{array}$$

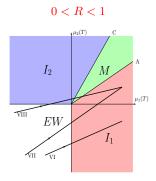
$EW \rightarrow I_1$

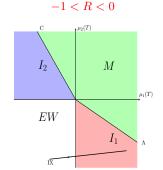
- ray $\mathbf{I} I_2$ is not an extremum
- ray II I₂ is an extremum, but never was a (local) minimum
- ray III I_2 is a local minimum, but never was a global minimum

$$EW \rightarrow I_2 \rightarrow I_1$$

- ray $IV I_2$ is not a local minimum, but was a global minimum in the past
- ray $V I_2$ is a local minimum, it was a global minimum in the past

Possible sequences II





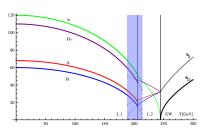
$$EW \rightarrow I_1$$

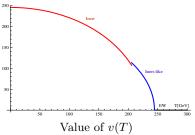
- rays VI, IX I_2 is not an extremum
- rays $VII I_2$ is an extremum, but never was a (local) minimum

$$EW \rightarrow I_2 \rightarrow M \rightarrow I_1$$

• ray $\mathbf{VIII}-I_2, M$ were global minima in the past

Ray IV: $EW \rightarrow I_2 \rightarrow I_1$

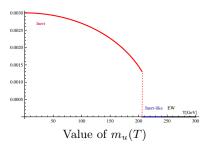




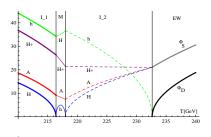
1st order phase transition between I_2 and I_1 – two coexisting minima (shaded region), discontinuity in physical parameters.

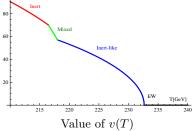
$$M_h = 120 \text{ GeV}, \quad M_H = 60 \text{ GeV},$$

 $M_A = 68 \text{ GeV}, \quad M_{H^{\pm}} = 110 \text{ GeV},$
 $\lambda_2 = 0.19, \quad \lambda_{345} = 0.26.$



Ray VIII:
$$EW \rightarrow I_2 \rightarrow M \rightarrow I_1$$

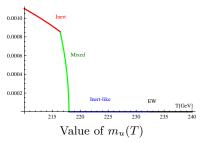




Sequence of three 2nd order phase transitions – no coexisting minima

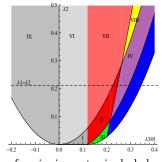
$$M_h = 120 \text{ GeV}, \quad M_H = 60 \text{ GeV},$$

 $M_A = 68 \text{ GeV}, \quad M_{H^{\pm}} = 110 \text{ GeV},$
 $\lambda_2 = 0.41, \quad \lambda_2 = 0.30.$

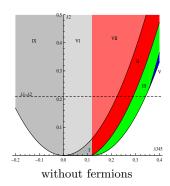


λ_2 dependance

- HHHH coupling $\propto \lambda_2$ does not affect the relict density, but important for the evolution
- Fermionic contribution in c_1 important.
- Parameter range for different rays:



fermionic contr. included



 $M_h = 120 \text{ GeV}, \quad M_H = 60 \text{ GeV}, \quad M_A = 68 \text{ GeV}, \quad M_{H^{\pm}} = 110 \text{ GeV}$

Conclusions

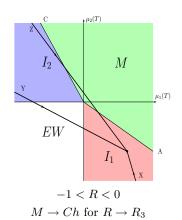
- Today Inert Model (dark matter).
- Different types of extrema can be realized in the past.
- Possible sequences of phase transitions:

$$EW \rightarrow I_2 \rightarrow M \rightarrow I_1$$

 $EW \rightarrow I_2 \rightarrow I_1$
 $EW \rightarrow I_1$

- It is possible to have no DM for high T (going through I_2).
- λ_2 important for the evolution.
- Not covered in this talk: transition through charge breaking vacuum, non-restoration of EW symmetry

Non-restoration of EW symmetry

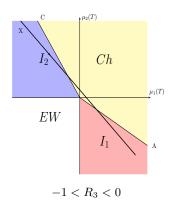


- $c_1 + c_2 > 0$ required from positivity constrains
- if $c_1 < 0$ or $c_2 < 0$ non-restoration of EW symmetry in the past
- possible only if R < 0 (possiblity of M vacuum) or $R_3 < 0$ (possiblity of Ch vacuum, next slide)
- ray X- intial state is I_1 , no phase transition, DM always existed $(c_1 < 0)$
- ray Y- initial state is I_2 , temporary apperance of EW state, DM after last transition to I_1 $(c_2 < 0)$
- ray **Z** initial state is I_2 , sequence $I_2 \to M \to I_1$, no EW symmetric state, DM after last transition $(c_2 < 0)$

Not ruled out, but contradicts the modern approach.

$$EW \to I_2 \to Ch \to I_1$$

For $|R_3| < 1$ possibility of transition through Ch vacuum.



- possible if $\lambda_4 \pm \lambda_5 > 0 \Rightarrow M_{H^{\pm}}^2 < M_A^2, M_H^2$ (charged DM particle)
- allowed values of $M_{H^\pm}\approx 100$ TeV give $m_{22}^2<0, |m_{22}^2|/m_{11}^2\approx 10^5$ (perturbativity and unitarity fulfilled)
- ray X realized if: $c_2 < 0 \text{ and } |c_2|/c_1 > |m_{22}^2|/m_{11}^2 \gtrsim 10^6 \Rightarrow \\ \text{in contradiction with positivity constrains}$

Conclusion: excluded in our model.