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Curvaton scenario

I In the curvaton scenario the primordial perturbations are not
sourced by the inflaton, but by another scalar field.

I Pick your favourite inflationary scenario and add another
scalar field, the curvaton σ. It acquires scalar perturbations
for superhorizon modes of the magnitude ∼ H∗/2π.

I It has essentially one free initial condition, the initial field
value σ∗ or r∗ ≡ V (σ∗)
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I Long after inflation has ended, the curvaton decays into
radiation producing the observed primordial perturbations.



A TeV mass curvaton?

I The mass of the curvaton is a priori a free parameter, and
many models with different masses have been studied.

I There are very compelling reasons to assume that there are
some new physics at the TeV scale.

I The LHC is gathering data, and once the luminosity is
upgraded, new results are expected to come “soon”.

I Any scalar field found in the TeV scale might possibly work as
a curvaton.



Bounds

I The curvaton must produce the amplitude of the primoridal
perturbations to match the observations, ζ ∼ 1.9× 10−5:
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I The curvaton will produce some amount non-Gaussianity. The
rough estimate for fNL is 1/rdecay. Observationally we know
that (roughly) |fNL| < 100:

fNL ∼
1

rdecay
⇒ r∗ >

10−4

6

m2

ζ2M2
Pl

I The primordial perturbations are known to be adiabatic to a
great accuracy. Thus the curvaton must decay before DM
decouples. We assume a very conservative1 limit for the
effective decay constant, Γ > 10−17GeV.

1Conservative in the sense that the realistic limit is probably larger.





Could there be self-interactions?

I Add a monomial term to the potential, Vint = λ σn

Mn−4 .
I For simplicity put λ = 1 and choose M = MPl. Now the

self-interaction is either
I originating from Planck scales,
I originating from lower scale physics, with a very small coupling

constant.

Either way, the self-interaction is very weak.

I In order for the quadratic model to be a good approximation,
the quadratic term must dominate the non-quadratic term
throughout the evolution. Since the energy density of the
curvaton is monotonously decreasing,
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This is for n = 8. For smaller values of n, the black line is even
more to the left.



Effect of the self-interactions
I The dynamics of the self-interaction have been documented,

see e.g. [arXiv:0906.3126] and [arXiv:0912.4657].
I The oscillations in the non-quadratic part of the potential are

slow and non-linear, and cause oscillations of the derivatives
of N in the parameter space.



Different values of n

I The self-interactions decrease the amplitude of the
perturbations on average.

I The oscillations can enhance the amplitude for some range of
parameters.

I After scanning through different values of the potential
(n = 4, 6, 8 and 10), we conclude that all other values of n are
disallowed, except for n = 8.

I Only the σ8-interaction enhances ζ enough, so that it can
produce the observed amplitude of the perturbations while not
decaying too late and not producing too large fNL and gNL.



ζ = 19.1× 10−5, Γ > 10−17GeV,
−6 < fNL < 111 and −3.5× 105 < gNL < 8.2× 105.



Large non-Gaussianity

I Even though the allowed regions have −6 < fNL < 111 and
−3.5× 105 < gNL < 8.2× 105, most of the regions still have
large |fNL| and/or |gNL|.



Conclusions

I For a TeV mass curvaton, even very small self-interactions will
always play a significant role in its evolution.

I For Planck scale suppressed monomials, only σ8 can work.

I The self-interaction will produce large non-Gaussianity.

I Since there is no simple relation between fNL and gNL, the
other one can be very large while the other one is very small.



Backup



Solving the self-interacting model

I The introduction of the self-interaction makes the system
non-linear, and the evolution of the background field value
and the perturbation is different.

I Use the ∆N-formalism to solve the model. The system is
described by

σ̈ + (3H + Γ)σ̇ + V ′(σ) = 0

ρ̇r = −4Hρr + Γσ̇2



A rough sketch of a curvaton



I The final value of perturbations depends roughly on two
factors:

1. the initial amplitude of the perturbations, H∗/σ∗
2. the efficiency of converting the curvaton perturbations to

curvature perturbations

I First order approximation for the efficiency factor is the energy
fraction in curvaton during the decay,

rdecay ≡
ρσ

ρr + ρσ
|decay .

I There are five free parameters m, n, Γ, λ and M and two
initial conditions H∗ and r∗.

I The equations of motion for the system are

σ̈ + (3H + Γ)σ̇ + m2σ + (n + 4)σn+3 = 0

ρ̇r = −4Hρr + Γσ̇2

3H2 = ρr + ρσ



Few words on numerics

I Only n = 0-case is solvable analytically, so the EOMs need to
be solved numerically.

I Instead of calculating the evolution of σ and δσ separately,
use the ∆N -formalism which is more suited to numerics.

I Time is unphysical. Always compare quantities not with fixed
time, but with fixed H.

I Solving the full EOM’s becomes increasingly slow as the
curvaton oscillates faster and faster in the quadratic regime.
Hence one has to revert to approximate EOM’s for ρσ at some
point.



Qualitative behaviour of the solutions

I A field oscillating in a monomial potential V ∝ σn+4 scales as

ρσ ∝ a−6
n+4
n+6 .

However if n > 6, there are no oscillating solutions.
I The evolution of the curvaton hence should have four distinct

phases:

1. Slow-roll, σ ∼ σ∗.
2. Non-quadratic regime, ρσ ∝ a−6 n+4

n+6 .
3. Quadratic regime, ρσ ∝ a−3.
4. Decay when H ∼ Γ.


